On the limits of generalization of the Kolmogorov integral
Matematičeskie zametki, Tome 77 (2005) no. 2, pp. 258-272

Voir la notice de l'article provenant de la source Math-Net.Ru

The generalization of the Kolmogorov integral to functions with values in a Banach space is considered. It is proved that the resulting integral turns out to be essentially more general than the Bochner integral and is exactly equivalent to an integral of McShane type, whose definition requires that the scaling function be measurable.
@article{MZM_2005_77_2_a7,
     author = {A. P. Solodov},
     title = {On the limits of generalization of the {Kolmogorov} integral},
     journal = {Matemati\v{c}eskie zametki},
     pages = {258--272},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a7/}
}
TY  - JOUR
AU  - A. P. Solodov
TI  - On the limits of generalization of the Kolmogorov integral
JO  - Matematičeskie zametki
PY  - 2005
SP  - 258
EP  - 272
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a7/
LA  - ru
ID  - MZM_2005_77_2_a7
ER  - 
%0 Journal Article
%A A. P. Solodov
%T On the limits of generalization of the Kolmogorov integral
%J Matematičeskie zametki
%D 2005
%P 258-272
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a7/
%G ru
%F MZM_2005_77_2_a7
A. P. Solodov. On the limits of generalization of the Kolmogorov integral. Matematičeskie zametki, Tome 77 (2005) no. 2, pp. 258-272. http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a7/