Solvability of nonlinear boundary-value problems arising in modeling plasma diffusion across a magnetic field and its equilibrium configurations
Matematičeskie zametki, Tome 77 (2005) no. 2, pp. 219-234.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the simplest one-dimensional model of plasma density balance in a tokamak type system, which can be reduced to an initial boundary-value problem for a second-order parabolic equation with implicit degeneration containing nonlocal (integral) operators. The problem of stabilizing nonstationary solutions to stationary ones is reduced to studying the solvability of a nonlinear integro-differential boundary-value problem. We obtain sufficient conditions for the parameters of this boundary-value problem to provide the existence and the uniqueness of a classical stationary solution, and for this solution we obtain the attraction domain by a constructive method.
@article{MZM_2005_77_2_a5,
     author = {G. A. Rudykh and A. V. Sinitsyn},
     title = {Solvability of nonlinear boundary-value problems arising in modeling plasma diffusion across a magnetic field and its equilibrium configurations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {219--234},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a5/}
}
TY  - JOUR
AU  - G. A. Rudykh
AU  - A. V. Sinitsyn
TI  - Solvability of nonlinear boundary-value problems arising in modeling plasma diffusion across a magnetic field and its equilibrium configurations
JO  - Matematičeskie zametki
PY  - 2005
SP  - 219
EP  - 234
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a5/
LA  - ru
ID  - MZM_2005_77_2_a5
ER  - 
%0 Journal Article
%A G. A. Rudykh
%A A. V. Sinitsyn
%T Solvability of nonlinear boundary-value problems arising in modeling plasma diffusion across a magnetic field and its equilibrium configurations
%J Matematičeskie zametki
%D 2005
%P 219-234
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a5/
%G ru
%F MZM_2005_77_2_a5
G. A. Rudykh; A. V. Sinitsyn. Solvability of nonlinear boundary-value problems arising in modeling plasma diffusion across a magnetic field and its equilibrium configurations. Matematičeskie zametki, Tome 77 (2005) no. 2, pp. 219-234. http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a5/

[1] Hyman J., Rosenau P., “Analysis of nonlinear parabolic equations modelling plasma diffusion across a magnetic field”, Lectures in Appl. Math., 23, 1986, 219–245 | MR | Zbl

[2] Rosenau P., Hyman J., “Plasma diffusion across a magnetic field”, Phys. D, 20 (1986), 444–446 | DOI | Zbl

[3] Rosenau P., Turkel E., “Long time asymptotic of a system for plasma diffusion”, TTSP, 16:2–3 (1987), 377–391 | Zbl

[4] Kwong Y., “Interior and boundary regularity of solutions to a plasma type equation”, Proc. Amer. Math. Soc., 104:2 (1988), 472–478 | DOI | Zbl

[5] Bertsch M., Kamin S., “A system of degenerate parabolic equations”, SIAM J. Math. Anal., 21:4 (1990), 905–916 | DOI | Zbl

[6] Kalashnikov A. S., “Nekotorye voprosy kachestvennoi teorii nelineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii vtorogo poryadka”, UMN, 42:2 (1987), 135–176 | Zbl

[7] Oleinik O. A., Kalashnikov A. S., Chzhou-Yui-Lin, “Zadacha Koshi i kraevye zadachi dlya uravnenii tipa nestatsionarnoi filtratsii”, Izv. AN SSSR. Ser. matem., 22:5 (1958), 667–704

[8] Sabinina E. S., “Ob odnom klasse nelineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii”, Dokl. AN SSSR, 143:4 (1962), 794–797 | Zbl

[9] Galaktionov V. A., Dorodnitsyn V. A., Elenin G. G., Kurdyumov S. P., Samarskii A. A., “Kvazilineinoe uravnenie teploprovodnosti: obostrenie, lokalizatsiya, simmetriya, tochnye resheniya, asimptotiki, struktury”, Itogi nauki i tekhniki. Sovremennye problemy matem. Noveishie dostizheniya, 28, VINITI, M., 1987, 95–205

[10] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987

[11] Aronson D. G., “Regularity of flows in porous media: a survey”, Nonlinear Diffusion Equations and Their Equilibrium States, V. 1, Springer-Verlag, New York, 1988, 35–49

[12] De Mottoni, Schiaffino A., Tesei A., “Attractivity properties of nonnegative solutions for a class of nonlinear degenerate parabolic problems”, Ann. Math. Pura Appl., 136 (1984), 35–48 | DOI | Zbl

[13] Aronson D. G., Crandall M. G., Peletier L. A., “Stabilization of solutions of a degenerate nonlinear diffusion problem”, Nonlinear Anal., 6:10 (1982), 1001–1022 | DOI | Zbl

[14] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962

[15] Krasnoselskii M. A., Vainiko G. M., Zabreiko P. P., Rutitskii Ya. B., Stetsenko V. Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969

[16] Guo D., Laksmikantham V., Nonlinear Problems in Abstract Cones, Academic Press, London, 1988 | Zbl

[17] Pokhozhaev S. I., “Ob uravneniyakh vida $\Delta u=f(x,u,Du)$”, Matem. sb., 113:2 (1980), 324–338 | Zbl

[18] Pokhozhaev S. I., “Ob ellipticheskikh zadachakh v $\mathbb R^n$ s superkriticheskim pokazatelem nelineinosti”, Matem. sb., 182:4 (1991), 467–489

[19] Mitidieri E., Pokhozhaev S. I., “Otsutstvie globalnykh polozhitelnykh reshenii kvazilineinykh ellipticheskikh neravenstv”, Dokl. RAN, 359:4 (1998), 456–460 | Zbl

[20] Bandle C., “A priori estimates and the boundary value of solutions for a problem arising in plasma physics”, Nonlinear Anal., 7:4 (1983), 439–451 | DOI | Zbl

[21] Rakotoson J., “Un modéle non local en physique des plasmas: résolution par une méthode de degré topologique”, Acta Appl. Math., 4:1 (1985), 1–14 | DOI | Zbl

[22] Khatson V., Pim Dzh., Prilozheniya funktsionalnogo analiza i teorii operatorov, Mir, M., 1983

[23] Guo D., Laksmikantham V., “Coupled fixed points of nonlinear operator with applications”, Nonlinear Anal., 11:5 (1987), 623–632 | DOI | Zbl

[24] Dnestrovskii Yu. N., Kostamarov D. P., Matematicheskoe modelirovanie plazmy, Nauka, M., 1982

[25] Khogan Dzh. T., “Mnogokomponentnye modeli perenosa v tokamake”, Vychislitelnye metody v fizike. Upravlyaemyi termoyadernyi sintez, Mir, M., 1980, 142–177

[26] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981