Local set theory
Matematičeskie zametki, Tome 77 (2005) no. 2, pp. 194-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1945, Eilenberg and MacLane introduced the new mathematical notion of category. Unfortunately, from the very beginning, category theory did not fit into the framework of either Zermelo–Fraenkel set theory or even von Neumann–Bernays–Gödel set-class theory. For this reason, in 1959, MacLane posed the general problem of constructing a new, more flexible, axiomatic set theory which would be an adequate logical basis for the whole of naïve category theory. In this paper, we give axiomatic foundations for local set theory. This theory might be one of the possible solutions of the MacLane problem.
@article{MZM_2005_77_2_a3,
     author = {V. K. Zakharov},
     title = {Local set theory},
     journal = {Matemati\v{c}eskie zametki},
     pages = {194--212},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a3/}
}
TY  - JOUR
AU  - V. K. Zakharov
TI  - Local set theory
JO  - Matematičeskie zametki
PY  - 2005
SP  - 194
EP  - 212
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a3/
LA  - ru
ID  - MZM_2005_77_2_a3
ER  - 
%0 Journal Article
%A V. K. Zakharov
%T Local set theory
%J Matematičeskie zametki
%D 2005
%P 194-212
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a3/
%G ru
%F MZM_2005_77_2_a3
V. K. Zakharov. Local set theory. Matematičeskie zametki, Tome 77 (2005) no. 2, pp. 194-212. http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a3/

[1] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970 | MR

[2] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1968

[3] Mendelson E., Vvedenie v matematicheskuyu logiku, Nauka, M., 1971 | MR

[4] Eilenberg S., MacLane S., “General theory of natural equivalences”, Trans. Amer. Math. Soc., 58 (1945), 231–294 | DOI | MR | Zbl

[5] MacLane S., “Locally small categories and the foundations of set theory”, Symposium (Warsaw, 1959), Pergamon, Oxford, 1961, 25–43 | MR

[6] Ehresmann C., “Guttungen von lokalen Strukturen”, J.-ber. Deutsch. Math. Verein, 60:2 (1957), 49–77 | MR | Zbl

[7] Dedecker P., “Introduction aux structures locales”, Coll. Géom. Diff. Glob. Bruxelles, 1958, 103–135 | MR

[8] Sonner J., “The formal definition of categories”, Math. Z., 80 (1962), 163–176 | DOI | MR | Zbl

[9] Gabriel P., “Des catégories abéliennes”, Bull. Soc. Math. France, 90 (1962), 323–448 | MR | Zbl

[10] da Costa N., “On two systems of set theory”, Proc. Koninkl. Nederl. Akad. Wet. Ser. A, 68:1 (1965), 95–98 | MR

[11] da Costa N., “Two formal systems of set theory”, Proc. Koninkl. Nederl. Akad. Wet. Ser. A, 70:1 (1967), 45–51 | MR | Zbl

[12] Isbell J., “Structure of categories”, Bull. Amer. Math. Soc., 72 (1966), 619–655 | DOI | Zbl

[13] MacLane S., “One universe as a foundation for category theory”, Lecture Notes in Math., 106, 1969, 192–200

[14] MacLane S., Categories for Working Mathematician, Springer-Verlag, Berlin, 1971 | Zbl

[15] Feferman S., “Set-theoretical foundations of category theory”, Lecture Notes in Math., 106, 1969, 201–247 | Zbl

[16] Herrlich H., Strecker G., Category Theory. An Introduction, Heldermann Verlag, Berlin, 1979 | Zbl

[17] Zakharov V. K., Mikhalev A. V., “Lokalnaya teoriya klassov i mnozhestv kak osnovanie dlya teorii kategorii”, Matematicheskie metody i prilozheniya, Tr. IX matematicheskikh chtenii MGSU, MGSU, Moskva, 2002, 91–94

[18] Andreev P. V., Bunina E. I., Zakharov V. K. Mikhalev A. V., “Osnovaniya teorii kategorii v ramkakh lokalnoi teorii mnozhestv”, Tezisy dokladov mezhdunarodnoi algebraicheskoi konferentsii, POMI, Sankt-Peterburg, 2002, 10–11

[19] Hatcher W. S., The Logical Foundations of Mathematics, Pergamon Press, Oxford, 1982 | Zbl