On the spectrum of a differential operator of high-order
Matematičeskie zametki, Tome 77 (2005) no. 2, pp. 188-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, sufficient conditions for the spectrum of the operator of high order to be discrete and unbounded below are obtained.
@article{MZM_2005_77_2_a2,
     author = {M. G. Gimadislamov},
     title = {On the spectrum of a differential operator of high-order},
     journal = {Matemati\v{c}eskie zametki},
     pages = {188--193},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a2/}
}
TY  - JOUR
AU  - M. G. Gimadislamov
TI  - On the spectrum of a differential operator of high-order
JO  - Matematičeskie zametki
PY  - 2005
SP  - 188
EP  - 193
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a2/
LA  - ru
ID  - MZM_2005_77_2_a2
ER  - 
%0 Journal Article
%A M. G. Gimadislamov
%T On the spectrum of a differential operator of high-order
%J Matematičeskie zametki
%D 2005
%P 188-193
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a2/
%G ru
%F MZM_2005_77_2_a2
M. G. Gimadislamov. On the spectrum of a differential operator of high-order. Matematičeskie zametki, Tome 77 (2005) no. 2, pp. 188-193. http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a2/

[1] Glazman I. M., Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, Fizmatgiz, M., 1963

[2] Titchmarsh E. Ch., Razlozhenie po sobstvennym funktsiyam, svyazannoe s differentsialnymi uravneniyami vtorogo poryadka, Ch. 1, IL, M., 1960

[3] Ismagilov R. A., “O spektre uravneniya Shturma–Liuvillya s koleblyuschimsya potentsialom”, Matem. zametki, 37:6 (1985), 869–879 | Zbl