A short proof of the twelve-point theorem
Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 117-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a short elementary proof of the following twelve-point theorem. Let $M$ be a convex polygon with vertices at lattice points, containing a single lattice point in its interior. Denote by $m$ (respectively, $m^*$) the number of lattice points in the boundary of $M$ (respectively, in the boundary of the dual polygon). Then $m+m^*=12$.
@article{MZM_2005_77_1_a9,
     author = {D. Repov\v{s} and M. B. Skopenkov and M. Cencelj},
     title = {A short proof of the twelve-point theorem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {117--120},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a9/}
}
TY  - JOUR
AU  - D. Repovš
AU  - M. B. Skopenkov
AU  - M. Cencelj
TI  - A short proof of the twelve-point theorem
JO  - Matematičeskie zametki
PY  - 2005
SP  - 117
EP  - 120
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a9/
LA  - ru
ID  - MZM_2005_77_1_a9
ER  - 
%0 Journal Article
%A D. Repovš
%A M. B. Skopenkov
%A M. Cencelj
%T A short proof of the twelve-point theorem
%J Matematičeskie zametki
%D 2005
%P 117-120
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a9/
%G ru
%F MZM_2005_77_1_a9
D. Repovš; M. B. Skopenkov; M. Cencelj. A short proof of the twelve-point theorem. Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 117-120. http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a9/

[1] Fulton W., Introduction to Toric Varieties, Princeton, New Jersey, 1993 | MR | Zbl

[2] Khovanskii A. G., “Mnogougolniki Nyutona, krivye na toricheskikh poverkhnostyakh i obraschenie teoremy Veilya”, UMN, 52:6 (1997), 113–142 | MR

[3] Poonen B., Rodriges-Villegas F., “Lattice polygons and the number 12”, Amer. Math. Month., 107:3 (2000), 238–250 | DOI | MR | Zbl