A short proof of the twelve-point theorem
Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 117-120
Cet article a éte moissonné depuis la source Math-Net.Ru
We present a short elementary proof of the following twelve-point theorem. Let $M$ be a convex polygon with vertices at lattice points, containing a single lattice point in its interior. Denote by $m$ (respectively, $m^*$) the number of lattice points in the boundary of $M$ (respectively, in the boundary of the dual polygon). Then $m+m^*=12$.
@article{MZM_2005_77_1_a9,
author = {D. Repov\v{s} and M. B. Skopenkov and M. Cencelj},
title = {A short proof of the twelve-point theorem},
journal = {Matemati\v{c}eskie zametki},
pages = {117--120},
year = {2005},
volume = {77},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a9/}
}
D. Repovš; M. B. Skopenkov; M. Cencelj. A short proof of the twelve-point theorem. Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 117-120. http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a9/
[1] Fulton W., Introduction to Toric Varieties, Princeton, New Jersey, 1993 | MR | Zbl
[2] Khovanskii A. G., “Mnogougolniki Nyutona, krivye na toricheskikh poverkhnostyakh i obraschenie teoremy Veilya”, UMN, 52:6 (1997), 113–142 | MR
[3] Poonen B., Rodriges-Villegas F., “Lattice polygons and the number 12”, Amer. Math. Month., 107:3 (2000), 238–250 | DOI | MR | Zbl