On the relationship between differentiability conditions and existence of a strong gradient
Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 93-98
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that for any $n\geqslant2$ there exists continuous function $f\colon\mathbb R^n\to\mathbb R$ which is differentiable almost everywhere, but has no strong gradient almost everywhere.
@article{MZM_2005_77_1_a7,
author = {G. G. Oniani},
title = {On the relationship between differentiability conditions and existence of a strong gradient},
journal = {Matemati\v{c}eskie zametki},
pages = {93--98},
year = {2005},
volume = {77},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a7/}
}
G. G. Oniani. On the relationship between differentiability conditions and existence of a strong gradient. Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 93-98. http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a7/
[1] Dzagnidze O., “On the differentiability of functions of two variables and of indefinite double integral”, Proc. A. Razmadze Math. Inst., 106 (1993), 7–48 | Zbl
[2] Dzagnidze O., “A necessary and sufficient condition for differentiability of functions of several variables”, Proc. A. Razmadze Math. Inst., 123 (2000), 23–29 | MR | Zbl
[3] Saks S., Teoriya integrala, M., 1949 | Zbl