Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2005_77_1_a6, author = {I. V. Nedelko}, title = {Existence of solutions with interior transition layers touching the boundary}, journal = {Matemati\v{c}eskie zametki}, pages = {80--92}, publisher = {mathdoc}, volume = {77}, number = {1}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a6/} }
I. V. Nedelko. Existence of solutions with interior transition layers touching the boundary. Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 80-92. http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a6/
[1] Vasileva A. B., Butuzov V. F., Nefedov N. N., “Kontrastnye struktury v singulyarno vozmuschennykh zadachakh”, Fundament. i prikl. matem., 4:3 (1998), 799–851
[2] Faif P., Grinli V., “Vnutrennie perekhodnye sloi dlya ellipticheskikh kraevykh zadach s malym parametrom”, UMN, 29:4 (1974), 103–131 | MR
[3] del Pino M. A., “Layers with nonsmooth interface in a semilinear elliptic problem”, Comm. Partial Differential Equations, 17:9 (1992), 1695–1708 | DOI | MR | Zbl
[4] Fife P. C., “Semilinear elliptic boundary value problems with small parameters”, Arch. Rat. Mech. Anal., 52:4 (1973), 205–232 | MR | Zbl
[5] Butuzov V. F., Nedelko I. V., “Asimptoticheskaya ustoichivost reshenii singulyarno vozmuschennykh zadach s pogranichnymi i vnutrennimi sloyami”, Differents. uravneniya, 36:2 (2000), 198–208 | MR | Zbl
[6] Nefedov N. N., “Metod differentsialnykh neravenstv dlya nekotorykh klassov nelineinykh singulyarno vozmuschennykh zadach s vnutrennimi sloyami”, Differents. uravneniya, 31:7 (1995), 1132–1139
[7] Nedelko I. V., Asimptoticheskaya ustoichivost i lokalnaya edinstvennost reshenii dvumernykh singulyarno vozmuschennykh zadach s pogranichnymi i vnutrennimi sloyami, Diss. ... k.f.-m.n., MGU, M., 1999