Existence of solutions with interior transition layers touching the boundary
Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 80-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the case of Dirichlet boundary conditions, the existence of a solution with interior transition layer touching the boundary is proved.
@article{MZM_2005_77_1_a6,
     author = {I. V. Nedelko},
     title = {Existence of solutions with interior transition layers touching the boundary},
     journal = {Matemati\v{c}eskie zametki},
     pages = {80--92},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a6/}
}
TY  - JOUR
AU  - I. V. Nedelko
TI  - Existence of solutions with interior transition layers touching the boundary
JO  - Matematičeskie zametki
PY  - 2005
SP  - 80
EP  - 92
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a6/
LA  - ru
ID  - MZM_2005_77_1_a6
ER  - 
%0 Journal Article
%A I. V. Nedelko
%T Existence of solutions with interior transition layers touching the boundary
%J Matematičeskie zametki
%D 2005
%P 80-92
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a6/
%G ru
%F MZM_2005_77_1_a6
I. V. Nedelko. Existence of solutions with interior transition layers touching the boundary. Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 80-92. http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a6/

[1] Vasileva A. B., Butuzov V. F., Nefedov N. N., “Kontrastnye struktury v singulyarno vozmuschennykh zadachakh”, Fundament. i prikl. matem., 4:3 (1998), 799–851

[2] Faif P., Grinli V., “Vnutrennie perekhodnye sloi dlya ellipticheskikh kraevykh zadach s malym parametrom”, UMN, 29:4 (1974), 103–131 | MR

[3] del Pino M. A., “Layers with nonsmooth interface in a semilinear elliptic problem”, Comm. Partial Differential Equations, 17:9 (1992), 1695–1708 | DOI | MR | Zbl

[4] Fife P. C., “Semilinear elliptic boundary value problems with small parameters”, Arch. Rat. Mech. Anal., 52:4 (1973), 205–232 | MR | Zbl

[5] Butuzov V. F., Nedelko I. V., “Asimptoticheskaya ustoichivost reshenii singulyarno vozmuschennykh zadach s pogranichnymi i vnutrennimi sloyami”, Differents. uravneniya, 36:2 (2000), 198–208 | MR | Zbl

[6] Nefedov N. N., “Metod differentsialnykh neravenstv dlya nekotorykh klassov nelineinykh singulyarno vozmuschennykh zadach s vnutrennimi sloyami”, Differents. uravneniya, 31:7 (1995), 1132–1139

[7] Nedelko I. V., Asimptoticheskaya ustoichivost i lokalnaya edinstvennost reshenii dvumernykh singulyarno vozmuschennykh zadach s pogranichnymi i vnutrennimi sloyami, Diss. ... k.f.-m.n., MGU, M., 1999