Dynamical equations for the quantum product on a symplectic space in affine coordinates
Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 42-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive a system of dynamical equations for an associative noncommutative product of functions on a symplectic space. This system is explicitly solved in semiclassical approximation.
@article{MZM_2005_77_1_a3,
     author = {O. N. Grigor'ev and M. V. Karasev},
     title = {Dynamical equations for the quantum product on a symplectic space in affine coordinates},
     journal = {Matemati\v{c}eskie zametki},
     pages = {42--52},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a3/}
}
TY  - JOUR
AU  - O. N. Grigor'ev
AU  - M. V. Karasev
TI  - Dynamical equations for the quantum product on a symplectic space in affine coordinates
JO  - Matematičeskie zametki
PY  - 2005
SP  - 42
EP  - 52
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a3/
LA  - ru
ID  - MZM_2005_77_1_a3
ER  - 
%0 Journal Article
%A O. N. Grigor'ev
%A M. V. Karasev
%T Dynamical equations for the quantum product on a symplectic space in affine coordinates
%J Matematičeskie zametki
%D 2005
%P 42-52
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a3/
%G ru
%F MZM_2005_77_1_a3
O. N. Grigor'ev; M. V. Karasev. Dynamical equations for the quantum product on a symplectic space in affine coordinates. Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 42-52. http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a3/

[1] Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., “Deformation theory and quantization”, Ann. Physics, 111 (1978), 61–151 | DOI | MR

[2] Omori H., Maeda Y., Yoshioka A., “Weyl manifolds and deformation quantization”, J. Adv. Math., 85 (1997), 224–255 | DOI | MR

[3] Karasev M. V., Maslov V. P., “Asimptoticheskoe i geometricheskoe kvantovanie”, UMN, 39:6 (1984), 115–173 | MR

[4] Karasev M. V., Maslov V. P., Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | MR | Zbl

[5] Karasev M. V., “Analogi ob'ektov teorii grupp Li dlya nelineinykh skobok Puassona”, Izv. AN SSSR. Ser. matem., 50:3 (1986), 508–538 | MR | Zbl

[6] Weinstein A., “Symplectic groupoids and Poisson manifolds”, Bull. Amer. Math. Soc., 16 (1987), 101–104 | DOI | Zbl

[7] Karasev M. V., Kvantovanie nelineinykh skobok Li–Puassona v kvaziklassicheskom priblizhenii, Preprint No. ITP-85-72P, ITF, Kiev, 1985

[8] Karasev M., “Quantization and intrinsic dynamics”, Asymptotic Methods For Wave And Quantum Equations, Advances in Math. Sci., eds. M. Karasev et al., Amer. Math. Soc., Providence, RI, 2003 | MR

[9] Grigorev O. N., Karasev M. V., “Vnutrennyaya kvantovaya dinamika i ee operatornoe predstavlenie nad ploskostyu s nestandartnoi svyaznostyu”, Russ. J. Math. Phys., 10:4 (2003), 422–435 | MR | Zbl

[10] Karasev M. V., “Advances in quantization: quantum tensors, explicit star-products, and restriction to irreducible leaves”, Diff. Geometry Appl., 9 (1998), 89–134 | DOI | Zbl

[11] Karasev M. V., Maslov quantization conditions in higher cohomology and analogs of notions developed in Lie theory for canonical fiber bundles of symplectic manifolds, Deposited at VINITI. March 12, 1982, No. 1092-82, 1093-82; No. 1093-82, МИЭМ, М., 1981

[12] Maslov V., Operatornye metody, Nauka, M., 1973

[13] Berezin F. A., “Kvantovanie”, Izv. AN SSSR. Ser. matem., 38:5 (1974), 1109–1165 | Zbl

[14] Weinstein A., “Traces and triangles in symmetric symplectic spaces”, Contemp. Math., 179 (1994), 262–270

[15] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965

[16] Tuynman G., Rios P., Weyl quantization from geometric quantization, Preprint, Lille, 1999