Hilbert and Hilbert--Samuel polynomials and partial differential equations
Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 141-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

Systems of linear partial differential equations with constant coefficients are considered. The spaces of formal and analytic solutions of such systems are described by algebraic methods. The Hilbert and Hilbert–Samuel polynomials for systems of partial differential equations are defined.
@article{MZM_2005_77_1_a12,
     author = {A. G. Khovanskii and S. P. Chulkov},
     title = {Hilbert and {Hilbert--Samuel} polynomials and partial differential equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {141--151},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a12/}
}
TY  - JOUR
AU  - A. G. Khovanskii
AU  - S. P. Chulkov
TI  - Hilbert and Hilbert--Samuel polynomials and partial differential equations
JO  - Matematičeskie zametki
PY  - 2005
SP  - 141
EP  - 151
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a12/
LA  - ru
ID  - MZM_2005_77_1_a12
ER  - 
%0 Journal Article
%A A. G. Khovanskii
%A S. P. Chulkov
%T Hilbert and Hilbert--Samuel polynomials and partial differential equations
%J Matematičeskie zametki
%D 2005
%P 141-151
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a12/
%G ru
%F MZM_2005_77_1_a12
A. G. Khovanskii; S. P. Chulkov. Hilbert and Hilbert--Samuel polynomials and partial differential equations. Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 141-151. http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a12/

[1] Mamford D., Algebraicheskaya geometriya. T. I. Kompleksnye proektivnye mnogoobraziya, Mir, M., 1978 | MR

[2] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Mir, M., 1972