Hilbert and Hilbert–Samuel polynomials and partial differential equations
Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 141-151
Cet article a éte moissonné depuis la source Math-Net.Ru
Systems of linear partial differential equations with constant coefficients are considered. The spaces of formal and analytic solutions of such systems are described by algebraic methods. The Hilbert and Hilbert–Samuel polynomials for systems of partial differential equations are defined.
@article{MZM_2005_77_1_a12,
author = {A. G. Khovanskii and S. P. Chulkov},
title = {Hilbert and {Hilbert{\textendash}Samuel} polynomials and partial differential equations},
journal = {Matemati\v{c}eskie zametki},
pages = {141--151},
year = {2005},
volume = {77},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a12/}
}
A. G. Khovanskii; S. P. Chulkov. Hilbert and Hilbert–Samuel polynomials and partial differential equations. Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 141-151. http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a12/
[1] Mamford D., Algebraicheskaya geometriya. T. I. Kompleksnye proektivnye mnogoobraziya, Mir, M., 1978 | MR
[2] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Mir, M., 1972