On locally free Abelian groups
Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 121-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following result is proved in the paper. An Abelian group $A$ is $Lw_1,w$-equivalent to the free Abelian group of countable rank if and only if it is a countably free Abelian group.
@article{MZM_2005_77_1_a10,
     author = {E. G. Sklyarenko},
     title = {On locally free {Abelian} groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {121--126},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a10/}
}
TY  - JOUR
AU  - E. G. Sklyarenko
TI  - On locally free Abelian groups
JO  - Matematičeskie zametki
PY  - 2005
SP  - 121
EP  - 126
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a10/
LA  - ru
ID  - MZM_2005_77_1_a10
ER  - 
%0 Journal Article
%A E. G. Sklyarenko
%T On locally free Abelian groups
%J Matematičeskie zametki
%D 2005
%P 121-126
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a10/
%G ru
%F MZM_2005_77_1_a10
E. G. Sklyarenko. On locally free Abelian groups. Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 121-126. http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a10/

[1] Kurosh A. G., Teoriya grupp, Nauka, M., 1967

[2] Fuks L., Beskonechnye abelevy gruppy, T. 2, Mir, M., 1977

[3] Kaup L., Keane M. S., “Induktive Limiten endlich erzeugter freier Moduln”, Manuscr. Math., 1:1 (1969), 9–21 | DOI | Zbl

[4] Sklyarenko E. G., “Teoriya gomologii i aksioma tochnosti”, UMN, 24:5 (1969), 87–140 | Zbl

[5] Sklyarenko E. G., “K teorii obobschennykh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 35:4 (1971), 831–843 | Zbl

[6] Sklyarenko E. G., “Nekotorye primeneniya funktora $\varprojlim^1$”, Matem. sb., 123:3 (1984), 369–390

[7] Fuks L., Beskonechnye abelevy gruppy, T. 1, Mir, M., 1974

[8] Henkin L., “A problem on inverse mapping systems”, Proc. Amer. Math. Soc., 1:2 (1950), 224–225 | DOI | Zbl

[9] Higman G., Stone A. H., “On inverse systems with trivial limits”, J. London Math. Soc., 29 (1954), 233–236 | DOI | Zbl

[10] Stinrod N., Eilenberg S., Osnovaniya algebraicheskoi topologii, IL, M., 1958

[11] Gray B. I., “Space of the same $n$-type for all $n$”, Topology, 5:3 (1966), 241–243 | DOI | Zbl

[12] Kharlan A. E., “Lokalnye gomologii i kogomologii, gomologicheskaya razmernost i obobschennye mnogoobraziya”, Matem. sb., 96:3 (1975), 347–373

[13] Zelinsky D., “Rings with ideal nuclei”, Duke Math. J., 18 (1951), 431–442 | DOI | Zbl

[14] Kurenkova T. L., “Schetnye gruppy kak obratnye predely grupp konechnogo ranga”, Izbrannye voprosy algebry, geometrii i diskretnoi matematiki, Izd-vo Mosk. un-ta, M., 1988, 47–57