Asymptotics of the reduced logarithmic capacity of a narrow cylinder
Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 16-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Dirichlet problem for the Laplace operator in the exterior of a narrow infinite cylinder with periodically varying directrix. The solution is sought in the class of functions logarithmically increasing as the distance from the cylinder is increased. The reduced logarithmic capacity is defined as a generalization of the logarithmic capacity (of the outer conformal radius).We construct and justify the asymptotics of the solution of the problem as the ratio of the diameter of the cross-section of the cylinder to its period tends to zero.
@article{MZM_2005_77_1_a1,
     author = {I. I. Argatov},
     title = {Asymptotics of the reduced logarithmic capacity of a narrow cylinder},
     journal = {Matemati\v{c}eskie zametki},
     pages = {16--27},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a1/}
}
TY  - JOUR
AU  - I. I. Argatov
TI  - Asymptotics of the reduced logarithmic capacity of a narrow cylinder
JO  - Matematičeskie zametki
PY  - 2005
SP  - 16
EP  - 27
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a1/
LA  - ru
ID  - MZM_2005_77_1_a1
ER  - 
%0 Journal Article
%A I. I. Argatov
%T Asymptotics of the reduced logarithmic capacity of a narrow cylinder
%J Matematičeskie zametki
%D 2005
%P 16-27
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a1/
%G ru
%F MZM_2005_77_1_a1
I. I. Argatov. Asymptotics of the reduced logarithmic capacity of a narrow cylinder. Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 16-27. http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a1/

[1] Nazarov S. A., “Osrednenie kraevykh zadach v oblasti, soderzhaschei tonkuyu polost s periodicheski izmenyayuschimsya secheniem”, Tr. MMO, 53, URSS, M., 1990, 98–129

[2] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Asimptotika reshenii zadachi Dirikhle v trekhmernoi oblasti s vyrezannoi tonkoi trubkoi”, Matem. sb., 116:2 (1981), 187–217

[3] Olver F., Asimptotika i spetsialnye funktsii, Nauka, M., 1990 | Zbl

[4] Fedoryuk M. V., “Zadacha Dirikhle dlya operatora Laplasa vo vneshnosti tonkogo tela vrascheniya”, Teoriya kubaturn. formul i prilozheniya funktsion. analiza k zadacham matem. fiziki, Tr. sem. S. L. Soboleva, 1, 1980, 113–131 | Zbl

[5] Fedoryuk M. V., Asimptotika: integraly i ryady, Nauka, M., 1987

[6] Polia G., Sege G., Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962

[7] Nazarov S. A., Paukshto M. V., Diskretnye modeli i osrednenie v zadachakh teorii uprugosti, Izd-vo LGU, L., 1984

[8] Argatov I. I., Nazarov S. A., “Asimptoticheskii analiz zadach na soedineniyakh oblastei razlichnykh predelnykh razmernostei. Telo, pronzennoe tonkim sterzhnem”, Izv. RAN. Ser. matem., 60:1 (1996), 3–36 | Zbl

[9] Bers L., Dzhon F., Shekhter M., Uravneniya s chastnymi proizvodnymi, Mir, M., 1966 | Zbl

[10] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh zadach v oblastyakh s konicheskimi tochkami”, Math. Nachr., 76:1 (1977), 29–60 | DOI | Zbl