Approximate Penalty Method in Optimal Control Problems for Nonsmooth Singular Systems
Matematičeskie zametki, Tome 76 (2004) no. 6, pp. 893-904.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an abstract optimal control problem with additional constraints and nonsmooth terms, but without the requirement that both the state equation on the set of admissible controls and the extremum problem be solvable. We use the approximate penalty method proposed here to find an approximate (in the weak sense) solution of the problem. As an example, we consider the optimal control problem for a singular nonlinear elliptic type equation.
@article{MZM_2004_76_6_a9,
     author = {S. Ya. Serovaǐskiǐ},
     title = {Approximate {Penalty} {Method} in {Optimal} {Control} {Problems} for {Nonsmooth} {Singular} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {893--904},
     publisher = {mathdoc},
     volume = {76},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a9/}
}
TY  - JOUR
AU  - S. Ya. Serovaǐskiǐ
TI  - Approximate Penalty Method in Optimal Control Problems for Nonsmooth Singular Systems
JO  - Matematičeskie zametki
PY  - 2004
SP  - 893
EP  - 904
VL  - 76
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a9/
LA  - ru
ID  - MZM_2004_76_6_a9
ER  - 
%0 Journal Article
%A S. Ya. Serovaǐskiǐ
%T Approximate Penalty Method in Optimal Control Problems for Nonsmooth Singular Systems
%J Matematičeskie zametki
%D 2004
%P 893-904
%V 76
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a9/
%G ru
%F MZM_2004_76_6_a9
S. Ya. Serovaǐskiǐ. Approximate Penalty Method in Optimal Control Problems for Nonsmooth Singular Systems. Matematičeskie zametki, Tome 76 (2004) no. 6, pp. 893-904. http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a9/

[1] Lions Zh.-L., Upravlenie singulyarnymi raspredelennymi sistemami, Nauka, M., 1987

[2] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999

[3] Yang L., Lektsii po variatsionnomu ischisleniyu i teorii optimalnogo upravleniya, Mir, M., 1974

[4] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Mir, M., 1977

[5] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1978

[6] Sumin V. I., “O rasshirenii optimizatsionnykh zadach, svyazannykh s funktsionalnymi uravneniyami v prostranstvakh suschestvenno ogranichennykh funktsii”, Matem. model. i optim. upravl., 1998, no. 1, 126–133 | Zbl

[7] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | Zbl

[8] Dubovitskii A. D., Milyutin A. A., Neobkhodimye usloviya slabogo ekstremuma, Nauka, M., 1971

[9] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | Zbl

[10] Yakubovich V. A., “K abstraktnoi teorii optimalnogo upravleniya”, Sib. matem. zh., 18:3 (1977), 685–707 | MR | Zbl

[11] Neustadt L. W., “An abstract variational theory with applications to a broad class of optimization problems”, SIAM J. Control., 1966, no. 4, 505–527 ; 1967, no. 1, 90–137 | DOI | MR | Zbl | DOI | MR | Zbl

[12] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972

[13] Gabasov R., Kirillova F. M., Osobye optimalnye upravleniya, Nauka, M., 1973

[14] Serovaiskii S. Ya., “Optimalnoe upravlenie dlya uravnenii ellipticheskogo tipa s negladkoi nelineinostyu”, Differents. uravneniya, 39:10 (2003), 1420–1424 | MR | Zbl

[15] Ekeland I., “The $\varepsilon $-variational principle revisited”, Lecture Notes in Math., 1446, 1990, 1–15 | MR | Zbl

[16] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981

[17] Serovaiskii S. Ya., “Priblizhennoe reshenie optimizatsionnykh zadach dlya singulyarnykh beskonechnomernykh sistem”, Sib. matem. zh., 44:3 (2003), 660–673 | MR | Zbl

[18] Funktsionalnyi analiz, ed. Krein S. G., M., 1972

[19] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972

[20] Ivanenko V. I., Melnik V. S., Variatsionnye metody v zadachakh upravleniya dlya sistem s raspredelennymi parametrami, Naukova dumka, Kiev, 1988

[21] Raitum U. E., Zadachi optimalnogo upravleniya dlya ellipticheskikh uravnenii, Zinatne, Riga, 1989 | Zbl

[22] Serovaiskii S. Ya., “Gradientnye metody v zadache optimalnogo upravleniya nelineinoi ellipticheskoi sistemoi”, Sib. matem. zh., 37:5 (1996), 1154–1166 | MR | Zbl