Sobolev Capacities of Configurations with Multiple Points in Poisson Space
Matematičeskie zametki, Tome 76 (2004) no. 6, pp. 874-882.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we study the difference between the space of all configurations and the space of configurations without multiple points, in the sense of topological properties, Poisson measures, and capacities generated by Sobolev functions. We prove that, under certain conditions, the set of configurations having multiple points has zero Sobolev $C_{r,p}$ capacity in the space of configurations on $\mathbb R^d$ with Poisson measure.
@article{MZM_2004_76_6_a7,
     author = {O. V. Pugachev},
     title = {Sobolev {Capacities} of {Configurations} with {Multiple} {Points} in {Poisson} {Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {874--882},
     publisher = {mathdoc},
     volume = {76},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a7/}
}
TY  - JOUR
AU  - O. V. Pugachev
TI  - Sobolev Capacities of Configurations with Multiple Points in Poisson Space
JO  - Matematičeskie zametki
PY  - 2004
SP  - 874
EP  - 882
VL  - 76
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a7/
LA  - ru
ID  - MZM_2004_76_6_a7
ER  - 
%0 Journal Article
%A O. V. Pugachev
%T Sobolev Capacities of Configurations with Multiple Points in Poisson Space
%J Matematičeskie zametki
%D 2004
%P 874-882
%V 76
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a7/
%G ru
%F MZM_2004_76_6_a7
O. V. Pugachev. Sobolev Capacities of Configurations with Multiple Points in Poisson Space. Matematičeskie zametki, Tome 76 (2004) no. 6, pp. 874-882. http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a7/

[1] Albeverio S., Kondratiev Yu. G., Röckner M., “Analysis and geometry on configuration spaces”, J. Funct. Anal., 154:2 (1998), 444–500 | DOI | MR | Zbl

[2] Albeverio S., Kondratiev Yu. G., Röckner M., “Analysis and geometry on configuration spaces: the Gibbsian case”, J. Funct. Anal., 157:1 (1998), 242–291 | DOI | MR | Zbl

[3] Bichteler K., Gravereaux J. B., Jacod J., Malliavin Calculus for Processes with Jumps, Gordon and Breach Sci. Publ., New York, 1987 | Zbl

[4] Bogachev V. I., Pugachev O. V., Rëkner M., “Poverkhnostnye mery i plotnost sobolevskikh emkostei na prostranstve Puassona”, Dokl. RAN, 386:1 (2002), 7–10 | MR

[5] Davydov Yu. A., Lifshits M. A., Smorodina N. V., Lokalnye svoistva raspredelenii stokhasticheskikh funktsionalov, Fizmatlit, M., 1995 | Zbl

[6] Röckner M., Schmuland B., “A support property for infinite-dimensional interacting diffusion processes”, C. R. Acad. Sci. Paris. Sér. I, 326 (1998), 359–364 | MR | Zbl

[7] Smorodina N. V., “Differentsialnoe ischislenie v prostranstve konfiguratsii i ustoichivye mery, I”, Teor. veroyatn. i prilozh., 33 (1988), 522–534 | MR

[8] Smorodina N. V., “Formula Ostrogradskogo–Gaussa dlya prostranstva konfiguratsii”, Teor. veroyatn. i prilozh., 35:4 (1990), 727–739 | MR | Zbl

[9] Pugachev O. V., “Prostranstvo prostykh konfiguratsii yavlyaetsya polskim”, Matem. zametki, 71:4 (2002), 581–589 | MR | Zbl

[10] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977

[11] Ma Zhi-Ming, Röckner M., “Construction of diffusions on configuration spaces”, Osaka J. Math., 37 (2000), 273–314 | MR

[12] Röckner M., “Stochastic analysis on configuration spaces: basic ideas and recent results”, New Directions in Dirichlet Forms, AMS/IP Stud. Adv. Math., 8, Amer. Math. Soc., Providence, RI, 1998, 157–231 | Zbl

[13] Bogachev V. I., Osnovy teorii mery, NITs “Regulyarnaya i khaoticheskaya dinamika”, Moskva–Izhevsk, 2003

[14] Albeverio S., Daletskii A., Lytvynov E., “Laplace operators on differential forms over configuration spaces”, J. Geom. Phys., 37 (2001), 15–46 | DOI | MR | Zbl