Sobolev Capacities of Configurations with Multiple Points in Poisson Space
Matematičeskie zametki, Tome 76 (2004) no. 6, pp. 874-882

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we study the difference between the space of all configurations and the space of configurations without multiple points, in the sense of topological properties, Poisson measures, and capacities generated by Sobolev functions. We prove that, under certain conditions, the set of configurations having multiple points has zero Sobolev $C_{r,p}$ capacity in the space of configurations on $\mathbb R^d$ with Poisson measure.
@article{MZM_2004_76_6_a7,
     author = {O. V. Pugachev},
     title = {Sobolev {Capacities} of {Configurations} with {Multiple} {Points} in {Poisson} {Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {874--882},
     publisher = {mathdoc},
     volume = {76},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a7/}
}
TY  - JOUR
AU  - O. V. Pugachev
TI  - Sobolev Capacities of Configurations with Multiple Points in Poisson Space
JO  - Matematičeskie zametki
PY  - 2004
SP  - 874
EP  - 882
VL  - 76
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a7/
LA  - ru
ID  - MZM_2004_76_6_a7
ER  - 
%0 Journal Article
%A O. V. Pugachev
%T Sobolev Capacities of Configurations with Multiple Points in Poisson Space
%J Matematičeskie zametki
%D 2004
%P 874-882
%V 76
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a7/
%G ru
%F MZM_2004_76_6_a7
O. V. Pugachev. Sobolev Capacities of Configurations with Multiple Points in Poisson Space. Matematičeskie zametki, Tome 76 (2004) no. 6, pp. 874-882. http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a7/