Sobolev Capacities of Configurations with Multiple Points in Poisson Space
Matematičeskie zametki, Tome 76 (2004) no. 6, pp. 874-882
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work, we study the difference between the space of all configurations and the space of configurations without multiple points, in the sense of topological properties, Poisson measures, and capacities generated by Sobolev functions. We prove that, under certain conditions, the set of configurations having multiple points has zero Sobolev $C_{r,p}$ capacity in the space of configurations on $\mathbb R^d$ with Poisson measure.
@article{MZM_2004_76_6_a7,
author = {O. V. Pugachev},
title = {Sobolev {Capacities} of {Configurations} with {Multiple} {Points} in {Poisson} {Space}},
journal = {Matemati\v{c}eskie zametki},
pages = {874--882},
publisher = {mathdoc},
volume = {76},
number = {6},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a7/}
}
O. V. Pugachev. Sobolev Capacities of Configurations with Multiple Points in Poisson Space. Matematičeskie zametki, Tome 76 (2004) no. 6, pp. 874-882. http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a7/