A Nonlinear Loaded Parabolic Equation and a Related Inverse Problem
Matematičeskie zametki, Tome 76 (2004) no. 6, pp. 840-853.

Voir la notice de l'article provenant de la source Math-Net.Ru

The solvability of the nonlocal-in-time boundary-value problem for the nonlinear parabolic equation $u_t-\Delta u+c(\bar u(x,T))u=f(x,t)$, where $\bar u(x,t)= \alpha(t)u(x,t)+\int^t_0\beta(\tau)u(x,\tau)\,d\tau$ for given functions $\alpha(t)$ and $\beta(t)$, is studied. Existence and uniqueness theorems for regular solutions are proved; it is shown that the results obtained can be used to study the solvability of coefficient inverse problems.
@article{MZM_2004_76_6_a4,
     author = {A. I. Kozhanov},
     title = {A {Nonlinear} {Loaded} {Parabolic} {Equation} and a {Related} {Inverse} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {840--853},
     publisher = {mathdoc},
     volume = {76},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a4/}
}
TY  - JOUR
AU  - A. I. Kozhanov
TI  - A Nonlinear Loaded Parabolic Equation and a Related Inverse Problem
JO  - Matematičeskie zametki
PY  - 2004
SP  - 840
EP  - 853
VL  - 76
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a4/
LA  - ru
ID  - MZM_2004_76_6_a4
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%T A Nonlinear Loaded Parabolic Equation and a Related Inverse Problem
%J Matematičeskie zametki
%D 2004
%P 840-853
%V 76
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a4/
%G ru
%F MZM_2004_76_6_a4
A. I. Kozhanov. A Nonlinear Loaded Parabolic Equation and a Related Inverse Problem. Matematičeskie zametki, Tome 76 (2004) no. 6, pp. 840-853. http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a4/

[1] Nakhushev A. M., Uravneniya matematicheskoi fiziki, Vysshaya shkola, M., 1995 | Zbl

[2] Dzhenaliev M. T., K teorii kraevykh zadach dlya nagruzhennykh differentsialnykh uravnenii, Institut teoreticheskoi i prikladnoi matematiki, Almaty, 1995

[3] Cannon J. R., Yin H. M., “On a class of nonlinear nonclassical parabolic problems”, J. Differential Equations, 79 (1989), 266–288 | DOI | MR | Zbl

[4] Chadam J. M., Peirce A., Yin H. M., “The blowup property of solutions to some diffusion equation with localized nonlinear reactions”, J. Math. Anal. Appl., 169:2 (1992), 313–328 | DOI | MR | Zbl

[5] Kozhanov A. I., “Inverse problem and “loaded” composite type equations”, Nelineinye granichnye zadachi, no. 10, 2000, 109–116

[6] Kozhanov A. I., “Nonlinear inverse problems for elliptic equations”, J. Inverse and III-Posed Problems, 9:4 (2001), 413–424 | MR | Zbl

[7] Shelukhin V. V., “Variatsionnyi printsip v nelokalnykh po vremeni zadachakh dlya lineinykh evolyutsionnykh uravnenii”, Sib. matem. zh., 34:2 (1993), 191–207 | MR | Zbl

[8] Shelukhin V. V., Nelokalnye po vremeni zadachi dlya uravnenii gidrodinamiki i variatsionnye printsipy, Diss. ... d. f.-m. n., Novosibirsk, 1992

[9] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[10] Oleinik O. A., Radkevich E. V., Uravneniya vtorogo poryadka s neotritsatelnoi kharakteristicheskoi formoi, Itogi nauki i tekhniki. Matematicheskii analiz 1969, 8, VINITI, M., 1971 | MR | Zbl

[11] Prilepko A. I., Kostin A. B., “Ob obratnykh zadachakh opredeleniya koeffitsientov v parabolicheskom uravnenii”, Sib. matem. zh., 33:3 (1992), 146–155 | MR | Zbl