Problem without Initial Conditions for the Heat Equation
Matematičeskie zametki, Tome 76 (2004) no. 6, pp. 824-832
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider an exterior problem without initial conditions for a class of equations of parabolic type. An existence and uniqueness theorem for the solution of this problem is proved. In the proof, Hardy's inequality for function spaces with derivatives of nonintegral order (a result obtained earlier by the author) is essentially used.
@article{MZM_2004_76_6_a2,
author = {R. V. Guseinov},
title = {Problem without {Initial} {Conditions} for the {Heat} {Equation}},
journal = {Matemati\v{c}eskie zametki},
pages = {824--832},
year = {2004},
volume = {76},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a2/}
}
R. V. Guseinov. Problem without Initial Conditions for the Heat Equation. Matematičeskie zametki, Tome 76 (2004) no. 6, pp. 824-832. http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a2/
[1] Tikhonov A. N., “Teoremy edinstvennosti dlya uravneniya teploprovodnosti”, Matem. sb., 42:2 (1935), 199–216
[2] Shmulev I. I., “Ogranichennye resheniya kraevykh zadach bez nachalnykh uslovii dlya parabolicheskikh uravnenii i obratnye kraevye zadachi”, Dokl. AN SSSR, 142:1 (1962), 46–49 | MR | Zbl
[3] Bokalo N. M., “O zadache bez nachalnykh uslovii dlya nekotorykh klassov nelineinykh parabolicheskikh uravnenii”, Tr. sem. im. I. G. Petrovskogo, no. 14, Izd-vo Mosk. un-ta, M., 1989, 3–44 | MR | Zbl
[4] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964