Estimation of Solutions of Boundary-Value Problems in Domains with Concentrated Masses Located Periodically along the Boundary: Case of Light Masses
Matematičeskie zametki, Tome 76 (2004) no. 6, pp. 928-944.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotic behavior of solutions and eigenelements of boundary-value problems with rapidly alternating type of boundary conditions in the domain $\Omega\subset\mathbb R^n$. The density, which depends on a small parameter $\varepsilon$, is of the order of $O(1)$ outside small inclusions, where the density is of the order of $O\bigl((\varepsilon \delta)^{-m}\bigr)$. These domains, i.e., concentrated masses of diameter $O(\varepsilon \delta)$, are located near the boundary at distances of the order of $O(\delta)$ from each other, where $\delta=\delta(\varepsilon )\to0$. We pose the Dirichlet condition (respectively, the Neumann condition) on the parts of the boundary $\partial\Omega$ that are tangent (respectively, lying outside) the concentrated masses. We estimate the deviations of the solutions of the limit (averaged) problems from the solutions of the original problems in the norm of the Sobolev space $W_2^1$ for $m2$.
@article{MZM_2004_76_6_a13,
     author = {G. A. Chechkin},
     title = {Estimation of {Solutions} of {Boundary-Value} {Problems} in {Domains} with {Concentrated} {Masses} {Located} {Periodically} along the {Boundary:} {Case} of {Light} {Masses}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {928--944},
     publisher = {mathdoc},
     volume = {76},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a13/}
}
TY  - JOUR
AU  - G. A. Chechkin
TI  - Estimation of Solutions of Boundary-Value Problems in Domains with Concentrated Masses Located Periodically along the Boundary: Case of Light Masses
JO  - Matematičeskie zametki
PY  - 2004
SP  - 928
EP  - 944
VL  - 76
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a13/
LA  - ru
ID  - MZM_2004_76_6_a13
ER  - 
%0 Journal Article
%A G. A. Chechkin
%T Estimation of Solutions of Boundary-Value Problems in Domains with Concentrated Masses Located Periodically along the Boundary: Case of Light Masses
%J Matematičeskie zametki
%D 2004
%P 928-944
%V 76
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a13/
%G ru
%F MZM_2004_76_6_a13
G. A. Chechkin. Estimation of Solutions of Boundary-Value Problems in Domains with Concentrated Masses Located Periodically along the Boundary: Case of Light Masses. Matematičeskie zametki, Tome 76 (2004) no. 6, pp. 928-944. http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a13/

[1] Krylov A. N., “O nekotorykh differentsialnykh uravneniyakh matematicheskoi fiziki, imeyuschikh prilozheniya v tekhnicheskikh voprosakh”, Izv. Nikolaevskoi morskoi akademii, 1913, no. 2, 325–348

[2] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1972

[3] Sanchez-Palencia É., “Perturbation of eigenvalues in thermoelasticity and vibration of a system with concentrated masses”, Trends and Application of Pure Math. to Mechanics, Lecture Notes in Phisics, 195, Springer-Verlag, Berlin, 1984, 346–368 | MR

[4] Oleinik O. A., Lektsii po uravneniyam s chastnymi proizvodnymi, Izd-vo MGU, M., 1976

[5] Oleinik O. A., “O sobstvennykh kolebaniyakh tel s kontsentrirovannymi massami”, Sovremennye problemy prikladnoi matematiki i matematicheskoi fiziki, Nauka, 1988, 101–128 | MR

[6] Oleinik O. A., “O spektrakh nekotorykh singulyarno vozmuschennykh operatorov”, UMN, 42:3 (1987), 221–222

[7] Oleinik O. A., “Homogenization problems in elasticity. Spectrum of singularly perturbed operators”, Non Classical Continuum Mechanics, 122, Cambridge University Press, Cambridge, 1987, 188–205

[8] Oleinik O. A., “O chastotakh sobstvennykh kolebanii tel s kontsentrirovannymi massami”, Funktsionalnye i chislennye metody matematicheskoi fiziki, Naukova dumka, Kiev, 1988, 165–171 | MR

[9] Golovatyi Yu. D., Spektralnye svoistva kolebatelnykh sistem s prisoedinennymi massami, Diss. ... k.f.-m.n., MGU, M., 1988

[10] Golovatyi Yu. D., Nazarov S. A., Oleinik O. A., Soboleva T. S., “O sobstvennykh kolebaniyakh struny s prisoedinennoi massoi”, Sib. matem. zh., 29:5 (1988), 71–91 | MR | Zbl

[11] Oleinik O. A., Soboleva T. S., “O sobstvennykh kolebaniyakh neodnorodnoi struny s konechnym chislom prisoedinennykh mass”, UMN, 43:4 (1988), 187–188

[12] Golovatyi Yu. D., “O sobstvennykh kolebaniyakh i sobstvennykh chastotakh uprugogo sterzhnya s prisoedinennoi massoi”, UMN, 43:4 (1988), 173–174

[13] Golovatyi Yu. D., “O sobstvennykh kolebaniyakh i sobstvennykh chastotakh zakreplennoi plastinki s prisoedinennoi massoi”, UMN, 43:5 (1988), 185–186 | MR | Zbl

[14] Golovatyi Yu. D., “Spektralnaya zadacha Neimana dlya operatora Laplasa s singulyarno vozmuschennoi plotnostyu”, UMN, 45:4 (1990), 147–148 | MR | Zbl

[15] Nazarov S. A., “Ob odnoi zadache Sanches-Palensiya s kraevymi usloviyami Neimana”, Izv. vuzov. Matem., 1989, no. 11, 60–66 | Zbl

[16] Rakhmanov N. U., O sobstvennykh kolebaniyakh sistem s kontsentrirovannymi massami, Diss. ... k.f.-m.n., MGU, M., 1991

[17] Golovatyi Yu. D., Nazarov S. A., Oleinik O. A., “Asimptotika sobstvennykh znachenii i sobstvennykh funktsii v zadachakh o kolebaniyakh sredy s singulyarnym vozmuscheniem plotnosti”, UMN, 43:5 (1988), 189–190 | MR | Zbl

[18] Golovatyi Yu. D., Nazarov S. A., Oleinik O. A., “Asimptoticheskie razlozheniya sobstvennykh znachenii i sobstvennykh funktsii zadach o kolebaniyakh sredy s kontsentrirovannymi vozmuscheniyami”, Tr. MIAN, 192, Nauka, M., 1990, 42–60 | MR

[19] Sanchez-Palensia É., Tchatat H., “Vibration de systèmes elastiques avec des masses concentrées”, Rend. Sem. Mat. Univ. e Politecnico di Torino, 42:3 (1984), 43–63 | MR | Zbl

[20] Leal C., Sanchez-Hubert J., “Perturbation of the eigenvalue of a membrane with a concentrated mass”, Quart. Appl. Math., 47:1 (1989), 93–103 | MR | Zbl

[21] Lobo M., Pérez E., “Asymptotic behavior of the vibrations of a body having many concentrated masses near the boundary”, C. R. Acad. Sci. Paris. Sér. II, 314 (1992), 13–18 | Zbl

[22] Lobo M., Pérez E., “On vibrations of a body with many concentrated masses near the boundary”, Math. Models and Methods in Appl. Sci., 3:2 (1993), 249–273 | DOI | MR | Zbl

[23] Lobo M., Pérez E., “Vibrations of a body with many concentrated masses near the boundary: high frequency vibrations”, Spectral Analysis of Complex Structures, Hermann, Paris, 1995, 85–101 | MR | Zbl

[24] Lobo M., Pérez E., “Vibrations of a membrane with many concentrated masses near the boundary”, Math. Models and Methods in Appl. Sci., 5:5 (1995), 565–585 | DOI | MR | Zbl

[25] Lobo M., Pérez E., “High frequency vibrations in a stiff problem”, Math. Models and Methods in Appl. Sci., 7:2 (1997), 291–311 | DOI | MR | Zbl

[26] Lobo M., Pérez E., “A skin effect for systems with many concentrated masses”, C. R. Acad. Sci. Paris. Sér. IIb, 327 (1999), 771–776 | Zbl

[27] Gómez D., Lobo M., Pérez E., “On the eigenfunctions associated with the high frequencies in systems with a concentrated mass”, J. Math. Pures Appl., 78 (1999), 841–865 | DOI | MR | Zbl

[28] Lobo M., Pérez E., “The skin effect in vibrating systems with many concentrated masses”, Math. Methods Appl. Sci., 24:1 (2001), 59–80 | 3.0.CO;2-4 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[29] Oleinik O. A., Sanchez-Hubert J., Yosifian G. A., “On vibration of membrane with concentrated masses”, Bull. Sci. Math., 115:1 (1991), 1–27 | MR | Zbl

[30] Sanchez-Hubert J., Sanchez-Palencia É., Vibration and Coupling of Continuous System. Asymptotic methods, Springer-Verlag, Berlin–Heidelberg, 1989 | Zbl

[31] Sanchez-Hubert J., “Perturbation des valeurs propres pour des systèmes avec masse concentrée”, C. R. Acad. Sci. Paris Ser. II Mec. Phys. Chim. Sci. Univers Sci. Terre, 309:6 (1989), 507–510 | MR | Zbl

[32] Doronina E. I., Chechkin G. A., “O sobstvennykh kolebaniyakh tela s bolshim kolichestvom neperiodicheski raspolozhennykh kontsentrirovannykh mass”, Tr. MIAN, 236, Nauka, M., 2002, 158–166 | MR

[33] Rybalko V., “Vibration of elastic systems with a large number of tiny heavy inclusions”, Asymptotic Analysis, 32:1 (2002), 27–62 | MR

[34] Peres M. E., Chechkin G. A., Yablokova (Doronina) E. I., “O sobstvennykh kolebaniyakh tela s “legkimi” kontsentrirovannymi massami na poverkhnosti”, UMN, 57:6 (2002), 195–196 | MR

[35] Chechkin G. A., “O kolebaniyakh tel s kontsentrirovannymi massami, raspolozhennymi na granitse”, UMN, 50:4 (1995), 105–106 | MR

[36] Chechkin G. A., “Usrednenie kraevykh zadach s singulyarnym vozmuscheniem granichnykh uslovii”, Matem. sb., 184:6 (1993), 99–150 | MR | Zbl

[37] Iosida K., Functional Analysis, Springer-Verlag, New York, 1965

[38] Gadylshin R. R., Chechkin G. A., “Kraevaya zadacha dlya Laplasiana s bystro menyayuschimsya tipom granichnykh uslovii v mnogomernoi oblasti”, Sib. matem. zh., 40:2 (1999), 271–287 | MR | Zbl

[39] Kondratev V. A., Oleinik O. A., “Ob asimptotike v okrestnosti beskonechnosti reshenii s konechnym integralom Dirikhle dlya ellipticheskikh uravnenii vtorogo poryadka”, Tr. seminara im. I. G. Petrovskogo, 12, Izd-vo MGU, M., 1987, 149–163

[40] Kondratiev V. A., Oleinik O. A., “Asymptotic properties of the elasticity system”, Proceedings of the International Conference “Application of Multiple Scaling in Mechanics”, Masson, Paris, 1987

[41] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, MGU, M., 1990

[42] Oleinik O. A., Chechkin G. A., “O kraevykh zadachakh dlya ellipticheskikh uravnenii s bystro menyayuschimsya tipom granichnykh uslovii”, UMN, 48:6 (1993), 163–164 | MR | Zbl

[43] Oleinik O. A., Chechkin G. A., On Asymptotics of Solutions and Eigenvalues of an Elliptic Problem with Rapidly Alternating Type of Boundary Conditions, SMR 719/4, International Center for Theoretical Physics, Trieste, 1993 | Zbl

[44] Oleinik O. A., Chechkin G. A., “Ob odnoi zadache granichnogo usredneniya dlya sistemy teorii uprugosti”, UMN, 49:4 (1994), 114

[45] Oleinik O. A., Chechkin G. A., “Solutions and eigenvalues of the boundary value problems with rapidly alternating boundary conditions for the system of elasticity.”, Rend. Lincei Math. Appl. (9), 7:1 (1996), 5–15 | MR | Zbl

[46] Agmon S., Duglis A., Nirenberg L., Otsenki reshenii ellipticheskikh uravnenii vblizi granitsy, IL, M., 1962

[47] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973

[48] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988

[49] Sobolev S. L., Izbrannye voprosy teorii funktsionalnykh prostranstv i obobschennykh funktsii, Nauka, M., 1989

[50] Chechkin G. A., Pérez M. E., Yablokova E. I., On eigenvibrations of a body with many “light” concentrated masses located nonperiodically along the boundary, Preprint of Universidad de Cantabria, No 1/2002. Abril 2002, Santander