Lower Bounds for the Riemann Zeta Function on the Critical Line
Matematičeskie zametki, Tome 76 (2004) no. 6, pp. 922-927
Voir la notice de l'article provenant de la source Math-Net.Ru
We establish a relation between the lower bound for the maximum of the modulus of $\zeta(1/2+iT+s)$ in the disk $|s|\le H$ and the lower bound for the maximum of the modulus of $\zeta(1/2+iT+it)$ on the closed interval $|t|\le H$ for $0$. We prove a theorem on the lower bound for the maximum of the modulus of $0$ on the closed interval $|t|\le H$ for $40\le H(T)\le\log\log T$.
@article{MZM_2004_76_6_a12,
author = {M. E. Changa},
title = {Lower {Bounds} for the {Riemann} {Zeta} {Function} on the {Critical} {Line}},
journal = {Matemati\v{c}eskie zametki},
pages = {922--927},
publisher = {mathdoc},
volume = {76},
number = {6},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a12/}
}
M. E. Changa. Lower Bounds for the Riemann Zeta Function on the Critical Line. Matematičeskie zametki, Tome 76 (2004) no. 6, pp. 922-927. http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a12/