On the Solution of a Second-Order Nonlinear Equation in the Exterior of a Compact Set
Matematičeskie zametki, Tome 76 (2004) no. 6, pp. 918-921.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the behavior of solutions of a semilinear elliptic equation in the exterior of a compact set as $|x|\to\infty$. Such equations were considered by many authors (for example, Kondrat'ev, Landis, Oleinik, Veron, etc.). In the present paper, we study the case in which in the equation contains lower terms. The coefficients of the lower terms are arbitrary bounded measurable functions. It is shown that the solutions of the equation tend to zero as $|x|\to\infty$.
@article{MZM_2004_76_6_a11,
     author = {T. S. Khachlaev},
     title = {On the {Solution} of a {Second-Order} {Nonlinear} {Equation} in the {Exterior} of a {Compact} {Set}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {918--921},
     publisher = {mathdoc},
     volume = {76},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a11/}
}
TY  - JOUR
AU  - T. S. Khachlaev
TI  - On the Solution of a Second-Order Nonlinear Equation in the Exterior of a Compact Set
JO  - Matematičeskie zametki
PY  - 2004
SP  - 918
EP  - 921
VL  - 76
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a11/
LA  - ru
ID  - MZM_2004_76_6_a11
ER  - 
%0 Journal Article
%A T. S. Khachlaev
%T On the Solution of a Second-Order Nonlinear Equation in the Exterior of a Compact Set
%J Matematičeskie zametki
%D 2004
%P 918-921
%V 76
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a11/
%G ru
%F MZM_2004_76_6_a11
T. S. Khachlaev. On the Solution of a Second-Order Nonlinear Equation in the Exterior of a Compact Set. Matematičeskie zametki, Tome 76 (2004) no. 6, pp. 918-921. http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a11/

[1] Kondratev V. A., Landis E. M., “O kachestvennykh svoistvakh reshenii odnogo nelineinogo uravneniya vtorogo poryadka”, Matem. sb., 135:3 (1988), 346–360 | Zbl

[2] Stampacchia G., “Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus”, Ann. Inst. Fourier (Grenoble), 15 (1965), 189–258 | MR | Zbl