Negative Results in Form-Preserving Approximation of Higher Order
Matematičeskie zametki, Tome 76 (2004) no. 6, pp. 812-823.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for $q$-convex polynomial approximations, where $q\ge4$ , inequalities of Jackson type are not valid even with a constant depending on the approximated function.
@article{MZM_2004_76_6_a1,
     author = {A. V. Bondarenko and A. V. Primak},
     title = {Negative {Results} in {Form-Preserving} {Approximation} of {Higher} {Order}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {812--823},
     publisher = {mathdoc},
     volume = {76},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a1/}
}
TY  - JOUR
AU  - A. V. Bondarenko
AU  - A. V. Primak
TI  - Negative Results in Form-Preserving Approximation of Higher Order
JO  - Matematičeskie zametki
PY  - 2004
SP  - 812
EP  - 823
VL  - 76
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a1/
LA  - ru
ID  - MZM_2004_76_6_a1
ER  - 
%0 Journal Article
%A A. V. Bondarenko
%A A. V. Primak
%T Negative Results in Form-Preserving Approximation of Higher Order
%J Matematičeskie zametki
%D 2004
%P 812-823
%V 76
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a1/
%G ru
%F MZM_2004_76_6_a1
A. V. Bondarenko; A. V. Primak. Negative Results in Form-Preserving Approximation of Higher Order. Matematičeskie zametki, Tome 76 (2004) no. 6, pp. 812-823. http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a1/

[1] Roberts A. W., Varbeg D. E., Convex Functions, Academic Press, New York, 1973 | Zbl

[2] Lorentz G. G., Zeller K. L., “Degree of approximation by monotone polynomials”, J. Approximation Theory, 1:4 (1968), 501–504 | DOI | MR | Zbl

[3] Lorentz G. G., “Monotone approximation”, Inequalities, V. III, ed. O. Shisha, Academic Press, New York, 1972, 201–215 | MR

[4] De Vore R. A., “Degree of approximation”, Approximation Theory, V. II, eds. G. G. Lorentz, C. K. Chui, L. Schumaker, Academic Press, New York, 1976, 117–162

[5] Beatson R. K., “The degree of monotone approximation”, Pacific J. Math., 74:1 (1978), 5–14 | MR | Zbl

[6] Shvedov A. S., “Poryadki kopriblizhenii funktsii algebraicheskimi mnogochlenami”, Matem. zametki, 29:1 (1981), 117–130 | MR | Zbl

[7] Shevchuk I. A., Priblizhenie mnogochlenami i sledy nepreryvnykh na otrezke funktsii, Naukova dumka, Kiev, 1992

[8] Bondarenko A. V., “Jackson type inequality in $3$-convex approximation”, East J. Approx., 8:3 (2002), 291–302 | MR

[9] Konovalov V. N., Leviatan D., “Shape-preserving widths of Sobolev-type classes of $s$-monotone functions on a finite interval”, Israel J. Math., 133 (2003), 239–268 | DOI | MR | Zbl

[10] Leviatan D., Shevchuk I. A., “Monotone approximation estimates involving the third modulus of smoothness”, Approximation Theory IX, Vanderbilt University Press, Nashville, TN, 1998, 223–230 | MR | Zbl