Generalization of the Balashov Theorem on Subseries of the Fourier--Haar Series
Matematičeskie zametki, Tome 76 (2004) no. 5, pp. 740-747.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2004_76_5_a9,
     author = {V. V. Kostin},
     title = {Generalization of the {Balashov} {Theorem} on {Subseries} of the {Fourier--Haar} {Series}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {740--747},
     publisher = {mathdoc},
     volume = {76},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a9/}
}
TY  - JOUR
AU  - V. V. Kostin
TI  - Generalization of the Balashov Theorem on Subseries of the Fourier--Haar Series
JO  - Matematičeskie zametki
PY  - 2004
SP  - 740
EP  - 747
VL  - 76
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a9/
LA  - ru
ID  - MZM_2004_76_5_a9
ER  - 
%0 Journal Article
%A V. V. Kostin
%T Generalization of the Balashov Theorem on Subseries of the Fourier--Haar Series
%J Matematičeskie zametki
%D 2004
%P 740-747
%V 76
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a9/
%G ru
%F MZM_2004_76_5_a9
V. V. Kostin. Generalization of the Balashov Theorem on Subseries of the Fourier--Haar Series. Matematičeskie zametki, Tome 76 (2004) no. 5, pp. 740-747. http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a9/

[1] Balashov L. A., “Obobschennoe integrirovanie ryadov po sisteme Khaara”, Vsesoyuznaya shkola po teorii funktsii, Erevan, 1987, 3

[2] Gevorkyan G. G., “Mazhoranta i edinstvennost ryadov po sisteme Franklina”, Matem. zametki, 59:4 (1996), 521–545 | MR | Zbl

[3] Golubov B. I., “Ob odnom klasse polnykh ortogonalnykh sistem”, Sib. matem. zh., 9:2 (1968), 297–314 | MR | Zbl

[4] Vlasova E. A., Obobschennye sistemy Khaara, Diss. ... k. f.-m. n., M., 1988

[5] Gevorkian G. G., “On Uniqueness of Additive Functions of Dyadic Cubes and Series by Haar Systems”, Izv. NAN Armenii. Matem., 30:5 (1995)

[6] Kostin V. V., “K voprosu o vosstanovlenii koeffitsientov ryadov po nekotorym ortogonalnym sistemam funktsii”, Matem. zametki, 73:5 (2003), 704–723 | MR | Zbl

[7] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Izd-vo AFTs, M., 1999

[8] Vlasova E. A., “Convergence of series with respect to generalized Haar systems”, Anal. Math., 13 (1987), 339–360 | DOI | MR | Zbl