Tur\'an Extremal Problem for Periodic Functions with Small Support and Its Applications
Matematičeskie zametki, Tome 76 (2004) no. 5, pp. 688-700.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a Turán extremal problem on the largest mean value of a 1-periodic even function with nonnegative Fourier coefficients, fixed value at zero, and support on a closed interval $[-h,h]$, $0$. We show how the solution of this extremal problem for rational numbers $h=p/q$ is related to the solution of two finite-dimensional problems of linear programming. The solution of the Turán problem for rational numbers $h$ of the form $2/q$, $3/q$, $4/q$, is obtained. Applications of the Turán problem to analytic number theory are given.
@article{MZM_2004_76_5_a4,
     author = {D. V. Gorbachev and A. S. Manoshina},
     title = {Tur\'an {Extremal} {Problem} for {Periodic} {Functions} with {Small} {Support} and {Its} {Applications}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {688--700},
     publisher = {mathdoc},
     volume = {76},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a4/}
}
TY  - JOUR
AU  - D. V. Gorbachev
AU  - A. S. Manoshina
TI  - Tur\'an Extremal Problem for Periodic Functions with Small Support and Its Applications
JO  - Matematičeskie zametki
PY  - 2004
SP  - 688
EP  - 700
VL  - 76
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a4/
LA  - ru
ID  - MZM_2004_76_5_a4
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%A A. S. Manoshina
%T Tur\'an Extremal Problem for Periodic Functions with Small Support and Its Applications
%J Matematičeskie zametki
%D 2004
%P 688-700
%V 76
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a4/
%G ru
%F MZM_2004_76_5_a4
D. V. Gorbachev; A. S. Manoshina. Tur\'an Extremal Problem for Periodic Functions with Small Support and Its Applications. Matematičeskie zametki, Tome 76 (2004) no. 5, pp. 688-700. http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a4/

[1] Gorbachev D. V., Manoshina A. S., “Ekstremalnaya zadacha Turana dlya periodicheskikh funktsii s malym nositelem”, Chebyshevskii sb., T. 2, 2001, 31–40 | MR

[2] Manoshina A. S., “Ekstremalnaya zadacha Turana dlya funktsii s malym nositelem”, Izv. TulGU. Ser. matem., mekh., informatika, 6:3 (2000), 113–116

[3] Gorbachev D. V., Manoshina A. S., “Ekstremalnaya zadacha Turana dlya periodicheskikh funktsii s malym nositelem”, Tezisy dokl. IV Mezhdunarodnoi konferentsii “Sovremennye problemy teorii chisel i ee prilozheniya” (Tula, 2001), Izd-vo MGU, M., 2001, 45–46

[4] Stechkin S. B., “Odna ekstremalnaya zadacha dlya trigonometricheskikh ryadov s neotritsatelnymi koeffitsientami”, Stechkin S. B., Izbrannye trudy: Matematika, Nauka, M., 1998, 244–245

[5] Gorbachev D. V., “Ekstremalnaya zadacha dlya periodicheskikh funktsii s nositelem v share”, Matem. zametki, 69:3 (2001), 346–352 | MR | Zbl

[6] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | Zbl

[7] Konyagin S., Shparlinski I., Character Sums with Exponential Functions and their Applications, Cambridge Univ. Press, Cambridge, 1999 | Zbl

[8] Montgomery H. L., Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., Providence, RI, 1994