On Zeros of Real Trigonometric Sums
Matematičeskie zametki, Tome 76 (2004) no. 5, pp. 792-797.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of calculating the number of zeros of a real trigonometric sum of an arbitrary form on a given interval is considered. Upper and lower bounds for this number are obtained by using the argument principle and are illustrated by examples.
@article{MZM_2004_76_5_a13,
     author = {M. E. Changa},
     title = {On {Zeros} of {Real} {Trigonometric} {Sums}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {792--797},
     publisher = {mathdoc},
     volume = {76},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a13/}
}
TY  - JOUR
AU  - M. E. Changa
TI  - On Zeros of Real Trigonometric Sums
JO  - Matematičeskie zametki
PY  - 2004
SP  - 792
EP  - 797
VL  - 76
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a13/
LA  - ru
ID  - MZM_2004_76_5_a13
ER  - 
%0 Journal Article
%A M. E. Changa
%T On Zeros of Real Trigonometric Sums
%J Matematičeskie zametki
%D 2004
%P 792-797
%V 76
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a13/
%G ru
%F MZM_2004_76_5_a13
M. E. Changa. On Zeros of Real Trigonometric Sums. Matematičeskie zametki, Tome 76 (2004) no. 5, pp. 792-797. http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a13/

[1] Karatsuba A. A., “O nulyakh trigonometricheskikh summ”, Dokl. RAN, 387:1 (2002), 11–12 | MR

[2] Polia G., Sege G., Zadachi i teoremy iz analiza, T. 1, Nauka, M., 1978

[3] Voronin S. M., Karatsuba A. A., Dzeta-funktsiya Rimana, Fizmatlit, M., 1994