On Zeros of Real Trigonometric Sums
Matematičeskie zametki, Tome 76 (2004) no. 5, pp. 792-797
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of calculating the number of zeros of a real trigonometric sum of an arbitrary form on a given interval is considered. Upper and lower bounds for this number are obtained by using the argument principle and are illustrated by examples.
@article{MZM_2004_76_5_a13,
author = {M. E. Changa},
title = {On {Zeros} of {Real} {Trigonometric} {Sums}},
journal = {Matemati\v{c}eskie zametki},
pages = {792--797},
year = {2004},
volume = {76},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a13/}
}
M. E. Changa. On Zeros of Real Trigonometric Sums. Matematičeskie zametki, Tome 76 (2004) no. 5, pp. 792-797. http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a13/
[1] Karatsuba A. A., “O nulyakh trigonometricheskikh summ”, Dokl. RAN, 387:1 (2002), 11–12 | MR
[2] Polia G., Sege G., Zadachi i teoremy iz analiza, T. 1, Nauka, M., 1978
[3] Voronin S. M., Karatsuba A. A., Dzeta-funktsiya Rimana, Fizmatlit, M., 1994