Quasi-Invariants of Dihedral Systems
Matematičeskie zametki, Tome 76 (2004) no. 5, pp. 776-791

Voir la notice de l'article provenant de la source Math-Net.Ru

For two-dimensional Coxeter systems with arbitrary multiplicities, a basis of the module of quasi-invariants over the invariants is explicitly constructed. It is proved that the basis thus obtained consists of $m$-harmonic polynomials. Hence this generalizes earlier results of Veselov and the author for systems of constant multiplicity.
@article{MZM_2004_76_5_a12,
     author = {M. V. Feigin},
     title = {Quasi-Invariants of {Dihedral} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {776--791},
     publisher = {mathdoc},
     volume = {76},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a12/}
}
TY  - JOUR
AU  - M. V. Feigin
TI  - Quasi-Invariants of Dihedral Systems
JO  - Matematičeskie zametki
PY  - 2004
SP  - 776
EP  - 791
VL  - 76
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a12/
LA  - ru
ID  - MZM_2004_76_5_a12
ER  - 
%0 Journal Article
%A M. V. Feigin
%T Quasi-Invariants of Dihedral Systems
%J Matematičeskie zametki
%D 2004
%P 776-791
%V 76
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a12/
%G ru
%F MZM_2004_76_5_a12
M. V. Feigin. Quasi-Invariants of Dihedral Systems. Matematičeskie zametki, Tome 76 (2004) no. 5, pp. 776-791. http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a12/