On Possible Values of Upper and Lower Derivatives with Respect to Convex Differential Bases
Matematičeskie zametki, Tome 76 (2004) no. 5, pp. 762-775

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if a convex density-like differential basis $B$ is centered and invariant with respect to translations and homotheties, then the integral means of a nonnegative integrable function with respect to $B$ can boundedly diverge only on a set of measure zero (this generalizes a theorem of Guzmán and Menarguez); it is established that both translation and homothety invariances are necessary.
@article{MZM_2004_76_5_a11,
     author = {G. G. Oniani},
     title = {On {Possible} {Values} of {Upper} and {Lower} {Derivatives} with {Respect} to {Convex} {Differential} {Bases}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {762--775},
     publisher = {mathdoc},
     volume = {76},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a11/}
}
TY  - JOUR
AU  - G. G. Oniani
TI  - On Possible Values of Upper and Lower Derivatives with Respect to Convex Differential Bases
JO  - Matematičeskie zametki
PY  - 2004
SP  - 762
EP  - 775
VL  - 76
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a11/
LA  - ru
ID  - MZM_2004_76_5_a11
ER  - 
%0 Journal Article
%A G. G. Oniani
%T On Possible Values of Upper and Lower Derivatives with Respect to Convex Differential Bases
%J Matematičeskie zametki
%D 2004
%P 762-775
%V 76
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a11/
%G ru
%F MZM_2004_76_5_a11
G. G. Oniani. On Possible Values of Upper and Lower Derivatives with Respect to Convex Differential Bases. Matematičeskie zametki, Tome 76 (2004) no. 5, pp. 762-775. http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a11/