Banach Spaces with the PC Property
Matematičeskie zametki, Tome 76 (2004) no. 4, pp. 568-577

Voir la notice de l'article provenant de la source Math-Net.Ru

A Banach space $X$ possesses the PC (point of continuity) property if for any $w$-closed bounded subset $A\subset X$ the identity map $(A,w)\to(A,\|\cdot\|)$ has a point of continuity ($w$ is the weak topology in $X$). We deduce some criteria for Banach spaces to have the PC property and describe (for dual Banach spaces) relationships between spaces possessing the PC property and spaces possessing the RN or the WRN property.
@article{MZM_2004_76_4_a8,
     author = {V. I. Rybakov},
     title = {Banach {Spaces} with the {PC} {Property}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {568--577},
     publisher = {mathdoc},
     volume = {76},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a8/}
}
TY  - JOUR
AU  - V. I. Rybakov
TI  - Banach Spaces with the PC Property
JO  - Matematičeskie zametki
PY  - 2004
SP  - 568
EP  - 577
VL  - 76
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a8/
LA  - ru
ID  - MZM_2004_76_4_a8
ER  - 
%0 Journal Article
%A V. I. Rybakov
%T Banach Spaces with the PC Property
%J Matematičeskie zametki
%D 2004
%P 568-577
%V 76
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a8/
%G ru
%F MZM_2004_76_4_a8
V. I. Rybakov. Banach Spaces with the PC Property. Matematičeskie zametki, Tome 76 (2004) no. 4, pp. 568-577. http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a8/