Pro-$p$ Groups with Finite Number of Ends
Matematičeskie zametki, Tome 76 (2004) no. 4, pp. 531-538.

Voir la notice de l'article provenant de la source Math-Net.Ru

The number of ends for a pro-p group is defined. The adequacy of the definition is confirmed by the obtained pro-p analogs of results on the number of ends of abstract groups. In particular, it is shown that, as in the abstract case, a pro-p group can have only 0, 1, 2, or infinitely many ends; pro-p groups with two ends are classified and a sufficient condition for a pro-p group to have precisely one end is obtained.
@article{MZM_2004_76_4_a5,
     author = {A. A. Korenev},
     title = {Pro-$p$ {Groups} with {Finite} {Number} of {Ends}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {531--538},
     publisher = {mathdoc},
     volume = {76},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a5/}
}
TY  - JOUR
AU  - A. A. Korenev
TI  - Pro-$p$ Groups with Finite Number of Ends
JO  - Matematičeskie zametki
PY  - 2004
SP  - 531
EP  - 538
VL  - 76
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a5/
LA  - ru
ID  - MZM_2004_76_4_a5
ER  - 
%0 Journal Article
%A A. A. Korenev
%T Pro-$p$ Groups with Finite Number of Ends
%J Matematičeskie zametki
%D 2004
%P 531-538
%V 76
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a5/
%G ru
%F MZM_2004_76_4_a5
A. A. Korenev. Pro-$p$ Groups with Finite Number of Ends. Matematičeskie zametki, Tome 76 (2004) no. 4, pp. 531-538. http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a5/

[1] Serr Zh.-P., Kogomologii Galua, Mir, M., 1968

[2] Melnikov O. V., “Faktor-gruppy prokonechnykh grupp s dvoistvennostyu Puankare”, Vesti AN Belarusi. Ser. fiz.-matem., 1996, no. 3, 54–58 | Zbl

[3] Melnikov O. V., Shishkevich A. A., “Pro-$p$-gruppy s virtualnoi dvoistvennostyu Puankare razmernosti $2$”, Dokl. NAN Belarusi, 46:1 (2002), 13–15 | MR

[4] Gruenberg K. W., Cohomological Topics in Group Theory, Lecture Notes in Math., 143, Springer-Verlag, Berlin, 1970 | MR | Zbl

[5] Zelmanov E. I., “On periodic compact groups”, Israel J. Math., 77 (1992), 83–95 | DOI | MR | Zbl

[6] Melnikov O. V., “Asfericheskie pro-$p$-gruppy”, Matem. sb., 193:11 (2002), 71–104 | MR | Zbl