Dirichlet Problem for a Class of Quasilinear Elliptic Equations
Matematičeskie zametki, Tome 76 (2004) no. 4, pp. 592-603
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, the Dirichlet problem for quasilinear elliptic equations is studied. New a priori estimates of the solution and its gradient are obtained. These estimates are derived without any assumptions on the smoothness of the coefficients and the right-hand side of the equation. Moreover, an arbitrary growth of the right-hand side with respect to the gradient of the solution is assumed. On the basis of the resulting estimates, existence theorems are proved.
@article{MZM_2004_76_4_a10,
author = {A. S. Tersenov},
title = {Dirichlet {Problem} for a {Class} of {Quasilinear} {Elliptic} {Equations}},
journal = {Matemati\v{c}eskie zametki},
pages = {592--603},
publisher = {mathdoc},
volume = {76},
number = {4},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a10/}
}
A. S. Tersenov. Dirichlet Problem for a Class of Quasilinear Elliptic Equations. Matematičeskie zametki, Tome 76 (2004) no. 4, pp. 592-603. http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a10/