Identities for the Squares of the Components of the Vector Eigenfunctions of the Dirac System of Equations with Periodic Coefficients
Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 459-465.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain identities for the squares of the components of the vector eigenfunctions of the system of Dirac equations with smooth periodic potential.
@article{MZM_2004_76_3_a14,
     author = {A. B. Khasanov and A. B. Yakhshimuratov},
     title = {Identities for the {Squares} of the {Components} of the {Vector} {Eigenfunctions} of the {Dirac} {System} of {Equations} with {Periodic} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {459--465},
     publisher = {mathdoc},
     volume = {76},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a14/}
}
TY  - JOUR
AU  - A. B. Khasanov
AU  - A. B. Yakhshimuratov
TI  - Identities for the Squares of the Components of the Vector Eigenfunctions of the Dirac System of Equations with Periodic Coefficients
JO  - Matematičeskie zametki
PY  - 2004
SP  - 459
EP  - 465
VL  - 76
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a14/
LA  - ru
ID  - MZM_2004_76_3_a14
ER  - 
%0 Journal Article
%A A. B. Khasanov
%A A. B. Yakhshimuratov
%T Identities for the Squares of the Components of the Vector Eigenfunctions of the Dirac System of Equations with Periodic Coefficients
%J Matematičeskie zametki
%D 2004
%P 459-465
%V 76
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a14/
%G ru
%F MZM_2004_76_3_a14
A. B. Khasanov; A. B. Yakhshimuratov. Identities for the Squares of the Components of the Vector Eigenfunctions of the Dirac System of Equations with Periodic Coefficients. Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 459-465. http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a14/

[1] McKean H. P., Trubowitz E., “Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points”, Comm. Pure Appl. Math., 29 (1976), 143–226 | DOI | MR | Zbl

[2] Deift P., Trubowitz E., “An identity among squares of eigenfunctions”, Comm. Pure Appl. Math., 34 (1981), 713–717 | DOI | MR | Zbl

[3] Veselov A. P., “Konechnozonnye potentsialy i integriruemye sistemy na sfere s kvadratichnym potentsialom”, Funktsion. analiz i ego prilozh., 14:1 (1980), 48–50 | MR | Zbl

[4] Mozer Yu., “Nekotorye aspekty integriruemykh gamiltonovykh sistem”, UMN, 36:5 (221) (1981), 109–151 | MR

[5] Savin A. V., “Tozhdestvo dlya kvadratov sobstvennykh funktsii beskonechnozonnogo operatora Shturma–Liuvillya”, Vestn. Mosk. un-ta. Ser. 1. Matem. mekh., 1984, no. 6, 83–85 | MR | Zbl

[6] Khasanov A. B., Ibragimov A. M., “Ob obratnoi zadache dlya operatora Diraka s periodicheskim potentsialom”, Uzb. matem. zh., 2001, no. 3–4, 48–55 | MR

[7] Levitan B. M., Sargsyan I. S., Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988 | Zbl