A~New Strong Laplacian on Differential Forms
Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 452-458

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a strong Laplacian $D^*D$ by using the third operator in the basis $\{d,d^*,D\}$ of the space of natural first-order operators acting on the differential forms of a Riemannian manifold $(M,g)$. We study the properties of the Laplacian $D^*D$ and obtain Weitzenbock's formula relating the three strong Laplacians $dd^*$, $d^*d$, and $D^*D$ to the curvature of the manifold $(M,g)$.
@article{MZM_2004_76_3_a13,
     author = {S. E. Stepanov},
     title = {A~New {Strong} {Laplacian} on {Differential} {Forms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {452--458},
     publisher = {mathdoc},
     volume = {76},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a13/}
}
TY  - JOUR
AU  - S. E. Stepanov
TI  - A~New Strong Laplacian on Differential Forms
JO  - Matematičeskie zametki
PY  - 2004
SP  - 452
EP  - 458
VL  - 76
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a13/
LA  - ru
ID  - MZM_2004_76_3_a13
ER  - 
%0 Journal Article
%A S. E. Stepanov
%T A~New Strong Laplacian on Differential Forms
%J Matematičeskie zametki
%D 2004
%P 452-458
%V 76
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a13/
%G ru
%F MZM_2004_76_3_a13
S. E. Stepanov. A~New Strong Laplacian on Differential Forms. Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 452-458. http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a13/