A~New Strong Laplacian on Differential Forms
Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 452-458.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a strong Laplacian $D^*D$ by using the third operator in the basis $\{d,d^*,D\}$ of the space of natural first-order operators acting on the differential forms of a Riemannian manifold $(M,g)$. We study the properties of the Laplacian $D^*D$ and obtain Weitzenbock's formula relating the three strong Laplacians $dd^*$, $d^*d$, and $D^*D$ to the curvature of the manifold $(M,g)$.
@article{MZM_2004_76_3_a13,
     author = {S. E. Stepanov},
     title = {A~New {Strong} {Laplacian} on {Differential} {Forms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {452--458},
     publisher = {mathdoc},
     volume = {76},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a13/}
}
TY  - JOUR
AU  - S. E. Stepanov
TI  - A~New Strong Laplacian on Differential Forms
JO  - Matematičeskie zametki
PY  - 2004
SP  - 452
EP  - 458
VL  - 76
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a13/
LA  - ru
ID  - MZM_2004_76_3_a13
ER  - 
%0 Journal Article
%A S. E. Stepanov
%T A~New Strong Laplacian on Differential Forms
%J Matematičeskie zametki
%D 2004
%P 452-458
%V 76
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a13/
%G ru
%F MZM_2004_76_3_a13
S. E. Stepanov. A~New Strong Laplacian on Differential Forms. Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 452-458. http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a13/

[1] Besse A., Mnogoobraziya Einshteina, T. 1, Mir, M., 1990

[2] Kolarzh I., “Estestvennye rassloeniya i operatory”, Itogi nauki i tekhn. Probl. geometrii, 23, VINITI, M., 1990, 67–98

[3] Kolař I., Michor P. W., Slowak J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin–New York, 1993

[4] Pale R., Seminar po teoreme Ati–Zingera ob indekse, Mir, M., 1970

[5] Slovak J., “On natural connections on Riemannian manifolds”, Comm. Math. Univ. Carol., 30:2 (1989), 389–393 | MR | Zbl

[6] Besse A., Chetyrekhmernaya rimanova geometriya, Mir, M., 1985

[7] Yano K., Bokhner S., Krivizna i chisla Betti, IL, M., 1957

[8] Yano K., Integral Formulas in Riemannian Geometry, Marcel Dekker, New York, 1970 | Zbl

[9] Wu H., The Bochner Technique in Differential Geometry, Harwood Acad. Publ., London, 1987

[10] Palais R., “Natural operators on differential forms”, Trans. Amer. Math. Soc., 92:1 (1959), 125–141 | DOI | MR | Zbl

[11] Weitzenbock R., Invariantentheorie, Noordhoft, Groningen, 1923

[12] Stepanov S. E., “A class of closed forms and special Maxwell's equations”, Tensor (N.S.), 58 (1997), 233–242 | MR | Zbl

[13] Kashiwada T., “On conformal Killing tensor”, Natural Science Report (Ochanomizu University), 19:2 (1968), 67–74 | MR | Zbl

[14] Stepanov S. E., Tsyganok I. I., “On a generalization of Kashiwada's theorem”, Webs Quasigroups, 1998–1999, 162–167

[15] Stepanov S. E., “Vektornoe prostranstvo konformno-killingovykh form na rimanovom mnogoobrazii”, Zapiski nauch. sem. POMI, 261, POMI, SPb., 1999, 240–265 | Zbl

[16] Stepanov S. E., “O primenenii odnoi teoremy P. A. Shirokova v tekhnike Bokhnera”, Izv. vuzov. Matem., 1996, no. 9, 53–59 | MR | Zbl