Periodic Solutions of a Nonlinear Wave Equation with Nonconstant Coefficients
Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 427-438
Voir la notice de l'article provenant de la source Math-Net.Ru
The existence of time-periodic solutions of a nonlinear equation for forced oscillations of a bounded string is proved when the d'Alembert operator has nonconstant coefficients and the nonlinear term has power-law growth.
@article{MZM_2004_76_3_a11,
author = {I. A. Rudakov},
title = {Periodic {Solutions} of a {Nonlinear} {Wave} {Equation} with {Nonconstant} {Coefficients}},
journal = {Matemati\v{c}eskie zametki},
pages = {427--438},
publisher = {mathdoc},
volume = {76},
number = {3},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a11/}
}
I. A. Rudakov. Periodic Solutions of a Nonlinear Wave Equation with Nonconstant Coefficients. Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 427-438. http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a11/