Periodic Solutions of a Nonlinear Wave Equation with Nonconstant Coefficients
Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 427-438

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of time-periodic solutions of a nonlinear equation for forced oscillations of a bounded string is proved when the d'Alembert operator has nonconstant coefficients and the nonlinear term has power-law growth.
@article{MZM_2004_76_3_a11,
     author = {I. A. Rudakov},
     title = {Periodic {Solutions} of a {Nonlinear} {Wave} {Equation} with {Nonconstant} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {427--438},
     publisher = {mathdoc},
     volume = {76},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a11/}
}
TY  - JOUR
AU  - I. A. Rudakov
TI  - Periodic Solutions of a Nonlinear Wave Equation with Nonconstant Coefficients
JO  - Matematičeskie zametki
PY  - 2004
SP  - 427
EP  - 438
VL  - 76
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a11/
LA  - ru
ID  - MZM_2004_76_3_a11
ER  - 
%0 Journal Article
%A I. A. Rudakov
%T Periodic Solutions of a Nonlinear Wave Equation with Nonconstant Coefficients
%J Matematičeskie zametki
%D 2004
%P 427-438
%V 76
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a11/
%G ru
%F MZM_2004_76_3_a11
I. A. Rudakov. Periodic Solutions of a Nonlinear Wave Equation with Nonconstant Coefficients. Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 427-438. http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a11/