Periodic Solutions of a Nonlinear Wave Equation with Nonconstant Coefficients
Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 427-438.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of time-periodic solutions of a nonlinear equation for forced oscillations of a bounded string is proved when the d'Alembert operator has nonconstant coefficients and the nonlinear term has power-law growth.
@article{MZM_2004_76_3_a11,
     author = {I. A. Rudakov},
     title = {Periodic {Solutions} of a {Nonlinear} {Wave} {Equation} with {Nonconstant} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {427--438},
     publisher = {mathdoc},
     volume = {76},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a11/}
}
TY  - JOUR
AU  - I. A. Rudakov
TI  - Periodic Solutions of a Nonlinear Wave Equation with Nonconstant Coefficients
JO  - Matematičeskie zametki
PY  - 2004
SP  - 427
EP  - 438
VL  - 76
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a11/
LA  - ru
ID  - MZM_2004_76_3_a11
ER  - 
%0 Journal Article
%A I. A. Rudakov
%T Periodic Solutions of a Nonlinear Wave Equation with Nonconstant Coefficients
%J Matematičeskie zametki
%D 2004
%P 427-438
%V 76
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a11/
%G ru
%F MZM_2004_76_3_a11
I. A. Rudakov. Periodic Solutions of a Nonlinear Wave Equation with Nonconstant Coefficients. Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 427-438. http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a11/

[1] Barbu V., Pavel N. H., “Periodic solutions to nonlinear one-dimensional wave equation with $x$-dependent coefficients”, Trans. Amer. Math. Soc., 349:5 (1997), 2035–2048 | DOI | MR | Zbl

[2] Rabinowitz P., “Free vibration for a semilinear wave equation”, Comm. Pure Appl. Math., 33:3 (1980), 667–689 | MR

[3] Bahri A., Brézis H., “Periodic solution of a nonlinear wave equation”, Proc. Roy. Soc. Edinburgh Sect. A, 85:3–4 (1980), 313–320 | MR | Zbl

[4] Plotnikov P. I., “Suschestvovanie schetnogo mnozhestva periodicheskikh reshenii zadachi o vynuzhdennykh kolebaniyakh dlya slabo nelineinogo volnovogo uravneniya”, Matem. sb., 136 (178):4 (8) (1988), 546–560

[5] Feireisl E., “On the existence of periodic solutions of a semilinear wave equation with a superlinear forcing term”, Czechoslovak Math. J., 38 (113):1 (1988), 78–87 | MR | Zbl

[6] Brézis H., Nirenberg L., “Forced vibrations for a nonlinear wave equation”, Comm. Pure Appl. Math., 31:1 (1978), 1–30 | MR | Zbl

[7] Rudakov I. A., “Nelineinye kolebaniya struny”, Vestn. MGU. Ser. 1. Matem., mekh., 1984, no. 2, 9–13 | MR | Zbl

[8] Pokhozhaev S. I., “O metode rassloeniya resheniya nelineinykh kraevykh zadach”, Tr. MIAN, 192, Nauka, M., 1990, 146–163 | MR

[9] Rudakov I. A., “Nelineinye kolebaniya neodnorodnoi struny”, Fundament. i prikladnaya matem., 8:3 (2002), 877–886 | MR | Zbl

[10] Feireisl E., “Time periodic solutions to a semilinear wave equation”, Nonlinear Anal., 12 (1988), 279–290 | DOI | MR | Zbl

[11] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Editorial URSS, M., 2002

[12] Rudakov I. A., “Periodicheskoe po vremeni reshenie uravneniya vynuzhdennykh kolebanii struny s odnorodnymi granichnymi usloviyami”, Differents. uravneniya, 39:12 (2003), 1–6 | MR