Best Approximations of Convex Compact Sets by Balls in the Hausdorff Metric
Matematičeskie zametki, Tome 76 (2004) no. 2, pp. 226-236
Voir la notice de l'article provenant de la source Math-Net.Ru
We deduce an upper bound for the Hausdorff distance between a nonempty bounded set and the set of all closed balls in a strictly convex straight geodesic space $X$ of nonnegative curvature. We prove that the set $\chi[M]$ of centers of closed balls approximating a convex compact set in the Hausdorff metric in the best possible way is nonempty $X[M]$ and is contained in $M$. Some other properties of $\chi[M]$ also are investigated.
@article{MZM_2004_76_2_a6,
author = {E. N. Sosov},
title = {Best {Approximations} of {Convex} {Compact} {Sets} by {Balls} in the {Hausdorff} {Metric}},
journal = {Matemati\v{c}eskie zametki},
pages = {226--236},
publisher = {mathdoc},
volume = {76},
number = {2},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a6/}
}
E. N. Sosov. Best Approximations of Convex Compact Sets by Balls in the Hausdorff Metric. Matematičeskie zametki, Tome 76 (2004) no. 2, pp. 226-236. http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a6/