Best Approximations of Convex Compact Sets by Balls in the Hausdorff Metric
Matematičeskie zametki, Tome 76 (2004) no. 2, pp. 226-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

We deduce an upper bound for the Hausdorff distance between a nonempty bounded set and the set of all closed balls in a strictly convex straight geodesic space $X$ of nonnegative curvature. We prove that the set $\chi[M]$ of centers of closed balls approximating a convex compact set in the Hausdorff metric in the best possible way is nonempty $X[M]$ and is contained in $M$. Some other properties of $\chi[M]$ also are investigated.
@article{MZM_2004_76_2_a6,
     author = {E. N. Sosov},
     title = {Best {Approximations} of {Convex} {Compact} {Sets} by {Balls} in the {Hausdorff} {Metric}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {226--236},
     publisher = {mathdoc},
     volume = {76},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a6/}
}
TY  - JOUR
AU  - E. N. Sosov
TI  - Best Approximations of Convex Compact Sets by Balls in the Hausdorff Metric
JO  - Matematičeskie zametki
PY  - 2004
SP  - 226
EP  - 236
VL  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a6/
LA  - ru
ID  - MZM_2004_76_2_a6
ER  - 
%0 Journal Article
%A E. N. Sosov
%T Best Approximations of Convex Compact Sets by Balls in the Hausdorff Metric
%J Matematičeskie zametki
%D 2004
%P 226-236
%V 76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a6/
%G ru
%F MZM_2004_76_2_a6
E. N. Sosov. Best Approximations of Convex Compact Sets by Balls in the Hausdorff Metric. Matematičeskie zametki, Tome 76 (2004) no. 2, pp. 226-236. http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a6/

[1] Buzeman G., Geometriya geodezicheskikh, Fizmatgiz, M., 1962

[2] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966

[3] Liskovets O. A., “Nekorrektnye zadachi i ustoichivost kvazireshenii”, Sib. matem. zh., 10:2 (1969), 373–385 | MR | Zbl

[4] Dudov S. I., Zlatorunskaya I. V., “Ravnomernaya otsenka vypuklogo kompakta sharom proizvolnoi normy”, Matem. sb., 191 (2000), 13–38 | MR | Zbl

[5] Vlasov L. P., “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, UMN, 28:6 (1973), 3–66 | MR | Zbl

[6] Berestovskii V. N., “Prostranstva Buzemana ogranichennoi sverkhu krivizny po Aleksandrovu”, Algebra i analiz, 14:5 (2002), 3–18 | MR

[7] Dudov S. I., Zlatorunskaya I. V., “Nailuchshee priblizhenie vypuklogo kompakta sharom proizvolnoi normy: svoistva resheniya”, Teoriya funktsii, ee prilozh. i smezhnye voprosy (Kazan, 13–18 sentyabrya 1999 g.), Kazanskoe fiz.-matem. obschestvo, Kazan, 1999, 88–90

[8] Sosov E. N., “O vypuklykh mnozhestvakh v spetsialnom metricheskom prostranstve”, Izv. vuzov. Ser. matem., 1996, no. 6, 81–84 | MR