The Nikulin Congruence for Four-Dimensional $M$-Varieties
Matematičeskie zametki, Tome 76 (2004) no. 2, pp. 205-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

For real four-dimensional algebraic $M$-varieties, a congruence for the Euler characteristic of the real locus, which is an analog of the Nikulin congruence of the Euler characteristic of an $M$-surface, is proved.
@article{MZM_2004_76_2_a4,
     author = {V. A. Krasnov},
     title = {The {Nikulin} {Congruence} for {Four-Dimensional} $M${-Varieties}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {205--215},
     publisher = {mathdoc},
     volume = {76},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a4/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - The Nikulin Congruence for Four-Dimensional $M$-Varieties
JO  - Matematičeskie zametki
PY  - 2004
SP  - 205
EP  - 215
VL  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a4/
LA  - ru
ID  - MZM_2004_76_2_a4
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T The Nikulin Congruence for Four-Dimensional $M$-Varieties
%J Matematičeskie zametki
%D 2004
%P 205-215
%V 76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a4/
%G ru
%F MZM_2004_76_2_a4
V. A. Krasnov. The Nikulin Congruence for Four-Dimensional $M$-Varieties. Matematičeskie zametki, Tome 76 (2004) no. 2, pp. 205-215. http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a4/

[1] Rokhlin V. A., “Sravneniya po $\bmod\,16$ v shestnadtsatoi probleme Gilberta”, Funktsion. analiz i ego prilozh., 6:4 (1972), 71–75 ; 7:2 (1973), 91–92 | MR | MR | Zbl

[2] Krasnov V. A., “Kharakteristicheskie klassy vektornykh rassloenii na veschestvennom algebraicheskom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 55:4 (1991), 716–746

[3] Nikulin V. V., “Involyutsii tselochislennykh kvadratichnykh form i ikh prilozheniya k veschestvennoi algebraicheskoi geometrii”, Izv. AN SSSR. Ser. matem., 47:1 (1983), 109–188 | MR

[4] Krasnov V. A., “O klassakh kogomologii, opredelennykh veschestvennymi tochkami veschestvennoi algebraicheskoi GM-poverkhnosti”, Izv. RAN. Ser. matem., 57:5 (1993), 210–221 | Zbl

[5] Krasnov V. A., “Veschestvennye algebraicheskie $GM\mathbb Z$-poverkhnosti”, Izv. RAN. Ser. matem., 62:4 (1998), 51–80 | MR | Zbl

[6] Grotendik A., O nekotorykh voprosakh gomologicheskoi algebry, IL, M., 1961

[7] Degtyarev A., Kharlamov V., “Halves of real Enriques surface”, Comm. Math. Helv., 71 (1996), 628–663 | DOI | MR | Zbl

[8] Krasnov V. A., “Neravenstva Garnaka–Toma dlya otobrazhenii veschestvennykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 47:2 (1983), 268–297 | MR

[9] Krasnov V. A., “Ob ekvivariantnykh kogomologiyakh Grotendika veschestvennogo algebraicheskogo mnogoobraziya i ikh prilozheniyakh”, Izv. RAN. Ser. matem., 58:3 (1994), 36–52 | MR | Zbl

[10] Nikulin V. V., “On the Brauer group of real algebraic surfaces”, Algebraic Geometry and its Applications (Yaroslavl$'$, 1992), Aspects Math., E25, Vieweg, Braunschweig, 1994, 113–136 | MR

[11] Krasnov V. A., “Veschestvennye algebraicheskie $GM$-mnogoobraziya”, Izv. RAN. Ser. matem., 62:3 (1998), 39–66 | MR | Zbl

[12] Arnold V. I., “O raspolozhenii ovalov veschestvennykh algebraicheskikh krivykh, involyutsiyakh chetyrekhmernykh gladkikh mnogoobrazii i arifmetike tselochislennykh kvadratichnykh form”, Funktsion. analiz i ego prilozh., 5:3 (1971), 1–9 | MR | Zbl