The Nikulin Congruence for Four-Dimensional $M$-Varieties
Matematičeskie zametki, Tome 76 (2004) no. 2, pp. 205-215

Voir la notice de l'article provenant de la source Math-Net.Ru

For real four-dimensional algebraic $M$-varieties, a congruence for the Euler characteristic of the real locus, which is an analog of the Nikulin congruence of the Euler characteristic of an $M$-surface, is proved.
@article{MZM_2004_76_2_a4,
     author = {V. A. Krasnov},
     title = {The {Nikulin} {Congruence} for {Four-Dimensional} $M${-Varieties}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {205--215},
     publisher = {mathdoc},
     volume = {76},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a4/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - The Nikulin Congruence for Four-Dimensional $M$-Varieties
JO  - Matematičeskie zametki
PY  - 2004
SP  - 205
EP  - 215
VL  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a4/
LA  - ru
ID  - MZM_2004_76_2_a4
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T The Nikulin Congruence for Four-Dimensional $M$-Varieties
%J Matematičeskie zametki
%D 2004
%P 205-215
%V 76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a4/
%G ru
%F MZM_2004_76_2_a4
V. A. Krasnov. The Nikulin Congruence for Four-Dimensional $M$-Varieties. Matematičeskie zametki, Tome 76 (2004) no. 2, pp. 205-215. http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a4/