The Nikulin Congruence for Four-Dimensional $M$-Varieties
Matematičeskie zametki, Tome 76 (2004) no. 2, pp. 205-215
Voir la notice de l'article provenant de la source Math-Net.Ru
For real four-dimensional algebraic $M$-varieties, a congruence for the Euler characteristic of the real locus, which is an analog of the Nikulin congruence of the Euler characteristic of an $M$-surface, is proved.
@article{MZM_2004_76_2_a4,
author = {V. A. Krasnov},
title = {The {Nikulin} {Congruence} for {Four-Dimensional} $M${-Varieties}},
journal = {Matemati\v{c}eskie zametki},
pages = {205--215},
publisher = {mathdoc},
volume = {76},
number = {2},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a4/}
}
V. A. Krasnov. The Nikulin Congruence for Four-Dimensional $M$-Varieties. Matematičeskie zametki, Tome 76 (2004) no. 2, pp. 205-215. http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a4/