Concerning Certain Classical Operators Occurring in~Multivariate Harmonic Analysis and Not of Weak Type~(1.1)
Matematičeskie zametki, Tome 76 (2004) no. 2, pp. 183-195.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, the question of Kolmogorov weak type (1.1) for multidimensional operators occurring in Fourier analysis is studied.
@article{MZM_2004_76_2_a2,
     author = {L. V. Zhizhiashvili},
     title = {Concerning {Certain} {Classical} {Operators} {Occurring} {in~Multivariate} {Harmonic} {Analysis} and {Not} of {Weak} {Type~(1.1)}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {183--195},
     publisher = {mathdoc},
     volume = {76},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a2/}
}
TY  - JOUR
AU  - L. V. Zhizhiashvili
TI  - Concerning Certain Classical Operators Occurring in~Multivariate Harmonic Analysis and Not of Weak Type~(1.1)
JO  - Matematičeskie zametki
PY  - 2004
SP  - 183
EP  - 195
VL  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a2/
LA  - ru
ID  - MZM_2004_76_2_a2
ER  - 
%0 Journal Article
%A L. V. Zhizhiashvili
%T Concerning Certain Classical Operators Occurring in~Multivariate Harmonic Analysis and Not of Weak Type~(1.1)
%J Matematičeskie zametki
%D 2004
%P 183-195
%V 76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a2/
%G ru
%F MZM_2004_76_2_a2
L. V. Zhizhiashvili. Concerning Certain Classical Operators Occurring in~Multivariate Harmonic Analysis and Not of Weak Type~(1.1). Matematičeskie zametki, Tome 76 (2004) no. 2, pp. 183-195. http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a2/

[1] Zhizhiashvili L., Trigonometric Fourier Series and their Conjugates, Kluwer Acad. Publ., Dordrecht, 1996 | Zbl

[2] Zhizhiashvili L. V., Nekotorye voprosy mnogomernogo garmonicheskogo analiza, TGU, Tbilisi, 1996

[3] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965

[4] Privalov I. I., Integral Koshi, Saratov, 1919, s. 60–104

[5] Zigmund A., Trigonometricheskie ryady, T. 2, Mir, M., 1965

[6] Rudin U., Teoriya funktsii v edinichnom share iz $\mathbb C^n$, Mir, M., 1984 | Zbl

[7] Hardy G. H., Littlewood J. E., “A maximal theorem with function-theoretic applications”, Acta Math., 54 (1930), 81–116 | DOI

[8] Saks S., “Remark on the differentiability of the Lebesgue integral”, Fund. Math., 22 (1934), 257–261 | Zbl

[9] Zygmund A., “On the differentiability of miltiple integrals”, Fund. Math., 23 (1934), 143–149 | Zbl

[10] Jessen B., Marcinkiewicz J., Zygmund A., “Note on the differentiability of multiple integrals”, Fund. Math., 25 (1935), 217–234 | Zbl

[11] Sokol-Sokolowski K., “On trigonometric series conjugate to Fourier series of two variables”, Fund. Math., 34 (1947), 166–182 | MR | Zbl

[12] Gusman M., Differentsirovanie integralov v $\mathbb R^n$, Mir, M., 1978

[13] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973

[14] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[15] Kolmogoroff A., “Sur les fonctions harmoniques conjuguées et les séries de Fourier”, Fund. Math., 7 (1925), 23–28

[16] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | Zbl

[17] Zhizhiashvili L. V., “O sopryazhennykh funktsiyakh i $n$-peremennykh”, Dokl. AN SSSR, 218:3 (1974), 517–518 | MR | Zbl

[18] Zhizhiashvili L. V., “O spravedlivosti teoremy A. N. Kolmogorova dlya sopryazhennykh funktsii mnogikh peremennykh”, Matem. zametki, 32:1 (1982), 13–21 | MR | Zbl

[19] Saks S., Teoriya integrala, IL, M., 1949

[20] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961

[21] Zygmund A., “On the boundary values of functions of several complex variables”, Fund. Math., 36 (1949), 207–235 | MR | Zbl

[22] Fefferman Ch., “Estimates for double Hilbert transforms”, Studia Math., 44:1 (1972), 1–15 | MR | Zbl

[23] Uljanov P. L., “Haar series and related questions”, Alfred Haar Memorial Conf. Budapest (Hungary), Colloq. Math. Soc. Janos Bolyai, 49/I, 1985, 57–96 | MR

[24] Golubov B. I., “Ryady po sisteme Khaara”, Itogi nauki i tekhniki. Matematicheskii analiz. 1970, VINITI, M., 1971, 109–146 | MR

[25] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Nauka, M., 1984 | Zbl

[26] Wade W. R., “Recent developments in the theory of Haar series”, Colloq. Math., 52:2 (1987), 213–238 | MR | Zbl