Branched Coverings over $\mathbb C^2$ and the Jacobian Conjecture
Matematičeskie zametki, Tome 76 (2004) no. 2, pp. 172-182.

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of branched coverings over $\mathbb C^2$ traditionally called exotic arouses interest because of its connection with the Jacobian conjecture. In this paper, we construct a series of examples of such coverings; in particular, methods of construction of coverings with arbitrarily many sheets, as well as with unknotted branch curves, are described. In addition, some topological characteristics of these coverings are computed, which allows us to answer some questions about a possible counterexample to the Jacobian conjecture.
@article{MZM_2004_76_2_a1,
     author = {G. V. Egorov},
     title = {Branched {Coverings} over $\mathbb C^2$ and the {Jacobian} {Conjecture}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {172--182},
     publisher = {mathdoc},
     volume = {76},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a1/}
}
TY  - JOUR
AU  - G. V. Egorov
TI  - Branched Coverings over $\mathbb C^2$ and the Jacobian Conjecture
JO  - Matematičeskie zametki
PY  - 2004
SP  - 172
EP  - 182
VL  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a1/
LA  - ru
ID  - MZM_2004_76_2_a1
ER  - 
%0 Journal Article
%A G. V. Egorov
%T Branched Coverings over $\mathbb C^2$ and the Jacobian Conjecture
%J Matematičeskie zametki
%D 2004
%P 172-182
%V 76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a1/
%G ru
%F MZM_2004_76_2_a1
G. V. Egorov. Branched Coverings over $\mathbb C^2$ and the Jacobian Conjecture. Matematičeskie zametki, Tome 76 (2004) no. 2, pp. 172-182. http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a1/

[1] Keller O. H., “Ganze Cremona–Transformationen”, Monats. Math. Physik, 47 (1939), 299–306 | DOI | Zbl

[2] Vitushkin A. G., “Nekotorye primery v svyazi s zadachei polinomialnykh preobrazovanii $\mathbb C^n$”, Izv. AN SSSR. Ser. matem., 35 (1971), 269–279 | MR | Zbl

[3] Engel W., “Ein Satz über ganze Cremona–Transformationen der Ebene”, Math. Ann., 130 (1955), 11–19 | DOI | MR | Zbl

[4] Orevkov S. Yu., “Diagrammy Rudolfa i analiticheskaya realizatsiya nakrytiya Vitushkina”, Matem. zametki, 60:2 (1996), 206–224 | MR | Zbl

[5] Orevkov S. Yu., “O trekhlistnykh polinomialnykh otobrazheniyakh $\mathbb C^2$”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1231–1240 | MR | Zbl

[6] Domrina A. V., Orevkov S. Yu., “O chetyrekhlistnykh polinomialnykh otobrazheniyakh $\mathbb C^2$. I: Sluchai neprivodimoi krivoi vetvleniya”, Matem. zametki, 64:6 (1998), 847–862 | MR | Zbl

[7] Domrina A. V., “O chetyrekhlistnykh polinomialnykh otobrazheniyakh $\mathbb C^2$. Obschii sluchai”, Matem. zametki, 65:3 (1999), 464–467 | MR | Zbl

[8] Vitushkin A. G., “Opisanie gomologii razvetvlennoi nakryvayuschei nad $\mathbb C^2$”, Matem. zametki, 64:6 (1998), 839–846 | MR | Zbl

[9] Egorov G. V., “Primer pyatilistnoi ekzoticheskoi nakryvayuschei nad $\mathbb C^2$”, Matem. zametki, 71:4 (2002), 532–547 | MR | Zbl

[10] Vitushkin A. G., “Kriterii predstavimosti tsepochki $\sigma$-protsessov kompozitsiei treugolnykh tsepochek”, Matem. zametki, 65:5 (1999), 643–653 | MR | Zbl

[11] Abhyankar S. S., Moh T. T., “Embeddings of the line in the plane”, J. Reine Angew. Math., 276 (1975), 148–166 | MR | Zbl