Riesz Bases of Eigenfunctions of an Integral Operator with a~Variable Limit of Integration
Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 97-110

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem on the Riesz basis property in the space $L_2[0,1]$ of the eigenfunctions and associated functions of an integral operator whose kernel possesses a derivative discontinuous on the line $t=1-x$.
@article{MZM_2004_76_1_a9,
     author = {V. P. Kurdyumov and A. P. Khromov},
     title = {Riesz {Bases} of {Eigenfunctions} of an {Integral} {Operator} with {a~Variable} {Limit} of {Integration}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {97--110},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a9/}
}
TY  - JOUR
AU  - V. P. Kurdyumov
AU  - A. P. Khromov
TI  - Riesz Bases of Eigenfunctions of an Integral Operator with a~Variable Limit of Integration
JO  - Matematičeskie zametki
PY  - 2004
SP  - 97
EP  - 110
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a9/
LA  - ru
ID  - MZM_2004_76_1_a9
ER  - 
%0 Journal Article
%A V. P. Kurdyumov
%A A. P. Khromov
%T Riesz Bases of Eigenfunctions of an Integral Operator with a~Variable Limit of Integration
%J Matematičeskie zametki
%D 2004
%P 97-110
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a9/
%G ru
%F MZM_2004_76_1_a9
V. P. Kurdyumov; A. P. Khromov. Riesz Bases of Eigenfunctions of an Integral Operator with a~Variable Limit of Integration. Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 97-110. http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a9/