Classification of Enriques Log Surfaces with $\delta=1$
Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 87-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Enriques log surfaces with $delta=1$ are classified.
@article{MZM_2004_76_1_a8,
     author = {S. A. Kudryavtsev},
     title = {Classification of {Enriques} {Log} {Surfaces} with $\delta=1$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {87--96},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a8/}
}
TY  - JOUR
AU  - S. A. Kudryavtsev
TI  - Classification of Enriques Log Surfaces with $\delta=1$
JO  - Matematičeskie zametki
PY  - 2004
SP  - 87
EP  - 96
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a8/
LA  - ru
ID  - MZM_2004_76_1_a8
ER  - 
%0 Journal Article
%A S. A. Kudryavtsev
%T Classification of Enriques Log Surfaces with $\delta=1$
%J Matematičeskie zametki
%D 2004
%P 87-96
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a8/
%G ru
%F MZM_2004_76_1_a8
S. A. Kudryavtsev. Classification of Enriques Log Surfaces with $\delta=1$. Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 87-96. http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a8/

[1] Shokurov V. V., “Complements on surfaces”, J. Math. Sci., 102:2 (2000), 3876–3932 | DOI | MR | Zbl

[2] Kudryavtsev S. A., Klassifikatsiya logpoverkhnostei Enrikvesa s $\delta=2$, , 2002 E-print math.AG/0204083

[3] Kollar J., Flips and Abundance for Algebraic Threefolds, Astérisque, 211, Soc. Math. France, Paris, 1992

[4] Prokhorov Yu. G., “Lectures on Complements on Log Surfaces”, MSJ Memoirs, 10, 2001 | MR

[5] Kudryavtsev S. A., Klassifikatsiya logpoverkhnostei del Petstso s $\delta=1$, , 2002 E-print math.AG/0207269

[6] Blache R., “The structure of l.c. surfaces of Kodaira dimension zero”, J. Algebraic Geom., 4 (1995), 137–179 | MR | Zbl

[7] Zhang D.-Q., “Logarithmic Enriques surfaces”, J. Math. Kyoto Univ., 31 (1991), 419–466 | MR | Zbl

[8] Oguiso K., Zhang D.-Q., $K3$ surfaces with order $11$ automorphisms, , 1999 E-print math.AG/9907020