Symplectic Geometry of Manifolds with Almost Nowhere Vanishing Closed 2-Form
Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 66-77
Voir la notice de l'article provenant de la source Math-Net.Ru
We study local geometric properties of manifolds equipped with a closed 2-form nondegenerate at all points of a dense proper subset. We introduce the natural notion of tame singular point, at which the matrix of the 2-form degenerates in a regular way. We find a condition for Hamiltonian dynamical systems to be extended smoothly to tame singular points, generalize the Darboux theorem about the local reduction of the matrix of the 2-form to canonical form, and study the singular behavior of directional gradients.
@article{MZM_2004_76_1_a6,
author = {D. B. Zot'ev},
title = {Symplectic {Geometry} of {Manifolds} with {Almost} {Nowhere} {Vanishing} {Closed} {2-Form}},
journal = {Matemati\v{c}eskie zametki},
pages = {66--77},
publisher = {mathdoc},
volume = {76},
number = {1},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a6/}
}
D. B. Zot'ev. Symplectic Geometry of Manifolds with Almost Nowhere Vanishing Closed 2-Form. Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 66-77. http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a6/