Symplectic Geometry of Manifolds with Almost Nowhere Vanishing Closed 2-Form
Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 66-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study local geometric properties of manifolds equipped with a closed 2-form nondegenerate at all points of a dense proper subset. We introduce the natural notion of tame singular point, at which the matrix of the 2-form degenerates in a regular way. We find a condition for Hamiltonian dynamical systems to be extended smoothly to tame singular points, generalize the Darboux theorem about the local reduction of the matrix of the 2-form to canonical form, and study the singular behavior of directional gradients.
@article{MZM_2004_76_1_a6,
     author = {D. B. Zot'ev},
     title = {Symplectic {Geometry} of {Manifolds} with {Almost} {Nowhere} {Vanishing} {Closed} {2-Form}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {66--77},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a6/}
}
TY  - JOUR
AU  - D. B. Zot'ev
TI  - Symplectic Geometry of Manifolds with Almost Nowhere Vanishing Closed 2-Form
JO  - Matematičeskie zametki
PY  - 2004
SP  - 66
EP  - 77
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a6/
LA  - ru
ID  - MZM_2004_76_1_a6
ER  - 
%0 Journal Article
%A D. B. Zot'ev
%T Symplectic Geometry of Manifolds with Almost Nowhere Vanishing Closed 2-Form
%J Matematičeskie zametki
%D 2004
%P 66-77
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a6/
%G ru
%F MZM_2004_76_1_a6
D. B. Zot'ev. Symplectic Geometry of Manifolds with Almost Nowhere Vanishing Closed 2-Form. Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 66-77. http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a6/

[1] Fomenko A. T., Simplekticheskaya geometriya. Metody i prilozheniya, MGU, M., 1988

[2] Bogoyavlenskii O. I., “Integriruemye uravneniya Eilera na algebrakh Li, voznikayuschie v zadachakh matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 48:5 (1984), 883–938 | MR

[3] Zotev D. B., “Fomenko–Zieschang invariant in the Bogoyavlenskyi integrable case”, Regular dynamics, 5:4 (2000), 437–458 | DOI | MR

[4] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Topologiya. Geometriya. Klassifikatsiya, Izd. dom “Udmurtskii universitet”, Izhevsk, 1999 | Zbl

[5] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979 | Zbl