On the Stability of Periodic Impulsive Systems
Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 44-51

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider periodic systems of ordinary differential equations with impulse perturbations at fixed points of time. It is assumed that the system possesses the trivial solution. We show that if the trivial solution of the system is stable or asymptotically stable, then it is uniformly stable or uniformly asymptotically stable, respectively. By using the method of Lyapunov functions, we establish criteria of uniform asymptotical stability and instability.
@article{MZM_2004_76_1_a4,
     author = {R. I. Gladilina and A. O. Ignatyev},
     title = {On the {Stability} of {Periodic} {Impulsive} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {44--51},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a4/}
}
TY  - JOUR
AU  - R. I. Gladilina
AU  - A. O. Ignatyev
TI  - On the Stability of Periodic Impulsive Systems
JO  - Matematičeskie zametki
PY  - 2004
SP  - 44
EP  - 51
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a4/
LA  - ru
ID  - MZM_2004_76_1_a4
ER  - 
%0 Journal Article
%A R. I. Gladilina
%A A. O. Ignatyev
%T On the Stability of Periodic Impulsive Systems
%J Matematičeskie zametki
%D 2004
%P 44-51
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a4/
%G ru
%F MZM_2004_76_1_a4
R. I. Gladilina; A. O. Ignatyev. On the Stability of Periodic Impulsive Systems. Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 44-51. http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a4/