Some Applications of the Formula for the Volume of an Octahedron
Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 27-43
Cet article a éte moissonné depuis la source Math-Net.Ru
We introduce the notions of combinatorial, metric and spatial symmetries of a polyhedron. In the case of symmetric octahedra, we present explicit forms of canonical polynomials for determining their volumes.
@article{MZM_2004_76_1_a3,
author = {R. V. Galiulin and S. N. Mikhalev and I. Kh. Sabitov},
title = {Some {Applications} of the {Formula} for the {Volume} of {an~Octahedron}},
journal = {Matemati\v{c}eskie zametki},
pages = {27--43},
year = {2004},
volume = {76},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a3/}
}
R. V. Galiulin; S. N. Mikhalev; I. Kh. Sabitov. Some Applications of the Formula for the Volume of an Octahedron. Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 27-43. http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a3/
[1] Sabitov I. Kh., “Obobschennaya formula Gerona–Tartalya i nekotorye ee sledstviya”, Matem. sb., 189:10 (1998), 105–134 | MR | Zbl
[2] Astrelin A. V., Sabitov I. Kh., “Minimalnyi po stepeni mnogochlen dlya ob'ema oktaedra”, UMN, 50:5 (1995), 245–246 | MR | Zbl
[3] Galiulin R. V., Lektsii po geometricheskim osnovam kristallografii, Izd-vo Chelyabinskogo universiteta, Chelyabinsk, 1989