On Polyconvolutions Generated by the Hankel Transform
Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 20-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct two polyconvolutions (generalized convolutions) with weight $\gamma=x^{-\nu}$ generated by the Hankel transform possessing the factorization relations $$ \text{H}_\nu[h_1](x)=x^{-\nu}\text{H}_\mu[f](x)\text{H}_\mu[g](x), \qquad \text{H}_\mu[h_2](x)=x^{-\nu}\text{H}_\nu[f](x)\text{H}_\mu[g](x). $$ Here $\text{H}_\mu$ is the Hankel transform operator of order $\mu$. Conditions for the existence of the constructed polyconvolutions are found. On their basis, using the differential properties of the Hankel transform, we obtain two more polyconvolutions. The derived constructions allow us to solve new classes of integral and integro-differential equations and systems of equations.
@article{MZM_2004_76_1_a2,
     author = {L. E. Britvina},
     title = {On {Polyconvolutions} {Generated} by the {Hankel} {Transform}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {20--26},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a2/}
}
TY  - JOUR
AU  - L. E. Britvina
TI  - On Polyconvolutions Generated by the Hankel Transform
JO  - Matematičeskie zametki
PY  - 2004
SP  - 20
EP  - 26
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a2/
LA  - ru
ID  - MZM_2004_76_1_a2
ER  - 
%0 Journal Article
%A L. E. Britvina
%T On Polyconvolutions Generated by the Hankel Transform
%J Matematičeskie zametki
%D 2004
%P 20-26
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a2/
%G ru
%F MZM_2004_76_1_a2
L. E. Britvina. On Polyconvolutions Generated by the Hankel Transform. Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 20-26. http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a2/

[1] Sneddon I., Preobrazovaniya Fure, IL, M., 1955

[2] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Fizmatlit, M., 1971

[3] Uflyand Ya. S., Integralnye preobrazovaniya v zadachakh teorii uprugosti, Izd-vo AN SSSR, L., 1967

[4] Kakichev V. A., Polisvertki. Opredeleniya, primery, svertochnye uravneniya, Konspekt lektsii, TRTGU, Taganrog, 1997

[5] Kakichev V. A., “O svertkakh dlya integralnykh preobrazovanii”, Izv. AN BSSR. Ser. fiz.-matem., 1967, no. 2, 48–57 | MR | Zbl

[6] Vu Kim Tuan, Megumi Saigo, “Convolutions of Hankel transform and its application to an integral involving Bessel function of first kind”, J. Math. Math. Sci., 18:2 (1995), 545–550

[7] Nguyen Xuan Thao, Nguyen Thanh Xai, Convolution for Integral Transforms and their Applications, Computer Center of the Russian Academy of Sciences, Moscow, 1997

[8] Yakubovich S. B., Moshinskii O. N., “Integralnye uravneniya i svertki, svyazannye s preobrazovaniyami tipa Kontorovicha–Lebedeva”, Differents. uravneniya, 29:7 (1993), 1272–1284 | MR | Zbl

[9] Knyazev P. N., Integralnye preobrazovaniya, Vysheish. shkola, Minsk, 1969 | Zbl

[10] Zhitomirskii Ya. I., “Zadacha Koshi dlya sistem lineinykh uravnenii v chastnykh proizvodnykh s differentsialnymi operatorami tipa Besselya”, Matem. sb., 36:2 (1955), 299–310 | MR

[11] Kakichev V. A., Britvina L. E., “O svertkakh dlya preobrazovaniya Khankelya”, Matematicheskie metody v obrazovanii, nauke i promyshlennosti, Tezisy dokladov mezhdunarodnoi nauchno-praktich. konferentsii, RIO PGU, Tiraspol, 1999, 35–36

[12] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Spetsialnye funktsii, Nauka, M., 1983 | Zbl

[13] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. 2, Nauka, M., 1966

[14] Titchmarsh E., Vvedenie v teoriyu integralov Fure, OGIZ, M., 1948

[15] Brychkov Yu. A., Prudnikov A. P., Integralnye preobrazovaniya obobschennykh funktsii, Nauka, M., 1977 | Zbl

[16] Britvina L. E., “Polisvertki preobrazovaniya Khankelya i differentsialnye operatory”, Dokl. RAN, 382:3 (2002), 298–300 | MR