On Polyconvolutions Generated by the Hankel Transform
Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 20-26

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct two polyconvolutions (generalized convolutions) with weight $\gamma=x^{-\nu}$ generated by the Hankel transform possessing the factorization relations $$ \text{H}_\nu[h_1](x)=x^{-\nu}\text{H}_\mu[f](x)\text{H}_\mu[g](x), \qquad \text{H}_\mu[h_2](x)=x^{-\nu}\text{H}_\nu[f](x)\text{H}_\mu[g](x). $$ Here $\text{H}_\mu$ is the Hankel transform operator of order $\mu$. Conditions for the existence of the constructed polyconvolutions are found. On their basis, using the differential properties of the Hankel transform, we obtain two more polyconvolutions. The derived constructions allow us to solve new classes of integral and integro-differential equations and systems of equations.
@article{MZM_2004_76_1_a2,
     author = {L. E. Britvina},
     title = {On {Polyconvolutions} {Generated} by the {Hankel} {Transform}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {20--26},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a2/}
}
TY  - JOUR
AU  - L. E. Britvina
TI  - On Polyconvolutions Generated by the Hankel Transform
JO  - Matematičeskie zametki
PY  - 2004
SP  - 20
EP  - 26
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a2/
LA  - ru
ID  - MZM_2004_76_1_a2
ER  - 
%0 Journal Article
%A L. E. Britvina
%T On Polyconvolutions Generated by the Hankel Transform
%J Matematičeskie zametki
%D 2004
%P 20-26
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a2/
%G ru
%F MZM_2004_76_1_a2
L. E. Britvina. On Polyconvolutions Generated by the Hankel Transform. Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 20-26. http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a2/