The $L_1$-Norm of a Trigonometric Sum
Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 133-143
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain estimates of the trigonometric sum $S_N(\alpha)=\sum_{n=1}^N\varepsilon(n)\exp(2\pi i\alpha n)$.
@article{MZM_2004_76_1_a12,
author = {K. M. Eminyan},
title = {The $L_1${-Norm} of {a~Trigonometric} {Sum}},
journal = {Matemati\v{c}eskie zametki},
pages = {133--143},
year = {2004},
volume = {76},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a12/}
}
K. M. Eminyan. The $L_1$-Norm of a Trigonometric Sum. Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 133-143. http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a12/
[1] Bochkarev S. V., “Ob odnom metode otsenki $L_1$-normy eksponentsialnoi summy”, Tr. MIAN, 218, Nauka, M., 1997, 74–76 | MR | Zbl
[2] Karatsuba A. A., “Ob otsenke $L_1$-normy odnoi eksponentsialnoi summy”, Matem. zametki, 64:3 (1998), 465–468 | MR | Zbl
[3] Eminyan K. M., “O probleme delitelei Dirikhle v nekotorykh posledovatelnostyakh naturalnykh chisel”, Izv. AN SSSR. Ser. matem., 55:3 (1991), 680–686 | MR | Zbl
[4] Eminyan K. M., “O predstavlenii chisel s zadannymi svoistvami dvoichnogo razlozheniya summami dvukh kvadratov”, Teoriya chisel i analiz, Tr. MIAN, 207, Nauka, M., 1994, 377–382 | Zbl