The $L_1$-Norm of a~Trigonometric Sum
Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 133-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain estimates of the trigonometric sum $S_N(\alpha)=\sum_{n=1}^N\varepsilon(n)\exp(2\pi i\alpha n)$.
@article{MZM_2004_76_1_a12,
     author = {K. M. Eminyan},
     title = {The $L_1${-Norm} of {a~Trigonometric} {Sum}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {133--143},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a12/}
}
TY  - JOUR
AU  - K. M. Eminyan
TI  - The $L_1$-Norm of a~Trigonometric Sum
JO  - Matematičeskie zametki
PY  - 2004
SP  - 133
EP  - 143
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a12/
LA  - ru
ID  - MZM_2004_76_1_a12
ER  - 
%0 Journal Article
%A K. M. Eminyan
%T The $L_1$-Norm of a~Trigonometric Sum
%J Matematičeskie zametki
%D 2004
%P 133-143
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a12/
%G ru
%F MZM_2004_76_1_a12
K. M. Eminyan. The $L_1$-Norm of a~Trigonometric Sum. Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 133-143. http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a12/

[1] Bochkarev S. V., “Ob odnom metode otsenki $L_1$-normy eksponentsialnoi summy”, Tr. MIAN, 218, Nauka, M., 1997, 74–76 | MR | Zbl

[2] Karatsuba A. A., “Ob otsenke $L_1$-normy odnoi eksponentsialnoi summy”, Matem. zametki, 64:3 (1998), 465–468 | MR | Zbl

[3] Eminyan K. M., “O probleme delitelei Dirikhle v nekotorykh posledovatelnostyakh naturalnykh chisel”, Izv. AN SSSR. Ser. matem., 55:3 (1991), 680–686 | MR | Zbl

[4] Eminyan K. M., “O predstavlenii chisel s zadannymi svoistvami dvoichnogo razlozheniya summami dvukh kvadratov”, Teoriya chisel i analiz, Tr. MIAN, 207, Nauka, M., 1994, 377–382 | Zbl