Purely Log-Terminal Blow-Ups of Index 1
Matematičeskie zametki, Tome 75 (2004) no. 6, pp. 917-926.

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify purely log-terminal blow-ups of index 1 of three-dimensional terminal singularities.
@article{MZM_2004_75_6_a9,
     author = {I. Yu. Fedorov},
     title = {Purely {Log-Terminal} {Blow-Ups} of {Index} 1},
     journal = {Matemati\v{c}eskie zametki},
     pages = {917--926},
     publisher = {mathdoc},
     volume = {75},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a9/}
}
TY  - JOUR
AU  - I. Yu. Fedorov
TI  - Purely Log-Terminal Blow-Ups of Index 1
JO  - Matematičeskie zametki
PY  - 2004
SP  - 917
EP  - 926
VL  - 75
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a9/
LA  - ru
ID  - MZM_2004_75_6_a9
ER  - 
%0 Journal Article
%A I. Yu. Fedorov
%T Purely Log-Terminal Blow-Ups of Index 1
%J Matematičeskie zametki
%D 2004
%P 917-926
%V 75
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a9/
%G ru
%F MZM_2004_75_6_a9
I. Yu. Fedorov. Purely Log-Terminal Blow-Ups of Index 1. Matematičeskie zametki, Tome 75 (2004) no. 6, pp. 917-926. http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a9/

[1] Reid M., “Young person's guide to canonical singularities”, Proc. Symp. in Pure Math., 46 (1987), 343–416

[2] Kawamata Y., “Divisorial contractions to $3$-dimentional terminal quotient singularities”, Higher-Dimentional Complex Varieties (Trento, 1994), Walter de Gruyter, Berlin, 1996, 241–246 | Zbl

[3] Kawakita M., General elements in anticanonical systems of threefolds with divisorial contractions and applications to classification, , 2001 E-print math.AG/0110050

[4] Hayakawa T., “Blowing ups of $3$-dimentional terminal singularities”, RIMS Kyoto Univ., 35 (1999), 515–570 | DOI | Zbl

[5] Fedorov I. Yu., “Razdutiya trekhmernykh terminalnykh osobennostei: $cA$ sluchai”, Matem. zametki, 71:3 (2002), 400–407 | Zbl

[6] Shokurov V. V., “Complements on surfaces. Algebraic geometry, 10”, J. Math. Sci. (New York), 102:2 (2000), 3876–3932 | DOI | Zbl

[7] Shokurov V. V., “Trekhmernye logperestroiki”, Izv. RAN. Ser. matem., 56 (1992), 105–203 | Zbl

[8] Prokhorov Yu. G., “Blow-ups of canonical singularities”, Algebra, Proc. Internat. Conf. on the Occasion of the 90th birthday of A. G. Kurosh (Moscow, Russia, May 25–30, 1998), ed. Yu. Bahturin, Walter de Gruyter, Berlin, 2000, 301–317 | Zbl

[9] Kudryavtsev S. A., “O chisto logterminalnykh razdutiyakh”, Matem. zametki, 69:6 (2001), 892–898 | Zbl

[10] Kawamata Y., Matsuda K., Matsuki K., “Introduction to the minimal model program”, Algebraic Geometry. Sendai, Adv. Stud. Pure Math., 10, 1987, 283–360 | Zbl

[11] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, Nauka, M., 1982

[12] Kollar J. et al., Flips and Abundance for Algebraic Threefolds, Astérisque, 211, Soc. Math. France, Paris, 1992

[13] Markushevich D. G., “Kanonicheskie osobennosti trekhmernykh giperpoverkhnostei”, Izv. AN SSSR. Ser. matem., 49:2 (1985), 334–368 | Zbl

[14] Hayakawa T., “Blowing Ups of 3-dimentional Terminal Singularities, II”, RIMS Kyoto Univ., 36 (2000), 423–456 | DOI | Zbl

[15] Tziolas N., Terminal 3-fold divisorial contractions of a surface to a curve, I, , 2001 E-print math.AG/0110074

[16] Cutkosky S., “Elementary contractions of Gorenstein threefolds”, Math. Ann., 280 (1988), 521–525 | DOI | Zbl

[17] Shokurov V. V., “Dobavlenie k state “Trekhmernye logperestroiki””, Izv. RAN. Ser. matem., 57:6 (1993), 141–175 | Zbl