Hyperbolic Coxeter $N$-Polytopes with $n+2$ Facets
Matematičeskie zametki, Tome 75 (2004) no. 6, pp. 909-916

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we classify all the hyperbolic noncompact Coxeter polytopes of finite volume whose combinatorial type is either that of a pyramid over a product of two simplices or a product of two simplices of dimension greater than one. Combined with the results of Kaplinskaja (1974) and Esselmann (1996), this completes the classification of hyperbolic Coxeter $N$-polytopes of finite volume with $n+2$ facets.
@article{MZM_2004_75_6_a8,
     author = {P. V. Tumarkin},
     title = {Hyperbolic {Coxeter} $N${-Polytopes} with $n+2$ {Facets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {909--916},
     publisher = {mathdoc},
     volume = {75},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a8/}
}
TY  - JOUR
AU  - P. V. Tumarkin
TI  - Hyperbolic Coxeter $N$-Polytopes with $n+2$ Facets
JO  - Matematičeskie zametki
PY  - 2004
SP  - 909
EP  - 916
VL  - 75
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a8/
LA  - ru
ID  - MZM_2004_75_6_a8
ER  - 
%0 Journal Article
%A P. V. Tumarkin
%T Hyperbolic Coxeter $N$-Polytopes with $n+2$ Facets
%J Matematičeskie zametki
%D 2004
%P 909-916
%V 75
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a8/
%G ru
%F MZM_2004_75_6_a8
P. V. Tumarkin. Hyperbolic Coxeter $N$-Polytopes with $n+2$ Facets. Matematičeskie zametki, Tome 75 (2004) no. 6, pp. 909-916. http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a8/