Hyperbolic Coxeter $N$-Polytopes with $n+2$ Facets
Matematičeskie zametki, Tome 75 (2004) no. 6, pp. 909-916
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we classify all the hyperbolic noncompact Coxeter polytopes of finite volume whose combinatorial type is either that of a pyramid over a product of two simplices or a product of two simplices of dimension greater than one. Combined with the results of Kaplinskaja (1974) and Esselmann (1996), this completes the classification of hyperbolic Coxeter $N$-polytopes of finite volume with $n+2$ facets.
@article{MZM_2004_75_6_a8,
author = {P. V. Tumarkin},
title = {Hyperbolic {Coxeter} $N${-Polytopes} with $n+2$ {Facets}},
journal = {Matemati\v{c}eskie zametki},
pages = {909--916},
publisher = {mathdoc},
volume = {75},
number = {6},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a8/}
}
P. V. Tumarkin. Hyperbolic Coxeter $N$-Polytopes with $n+2$ Facets. Matematičeskie zametki, Tome 75 (2004) no. 6, pp. 909-916. http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a8/