Hyperbolic Coxeter $N$-Polytopes with $n+2$ Facets
Matematičeskie zametki, Tome 75 (2004) no. 6, pp. 909-916.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we classify all the hyperbolic noncompact Coxeter polytopes of finite volume whose combinatorial type is either that of a pyramid over a product of two simplices or a product of two simplices of dimension greater than one. Combined with the results of Kaplinskaja (1974) and Esselmann (1996), this completes the classification of hyperbolic Coxeter $N$-polytopes of finite volume with $n+2$ facets.
@article{MZM_2004_75_6_a8,
     author = {P. V. Tumarkin},
     title = {Hyperbolic {Coxeter} $N${-Polytopes} with $n+2$ {Facets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {909--916},
     publisher = {mathdoc},
     volume = {75},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a8/}
}
TY  - JOUR
AU  - P. V. Tumarkin
TI  - Hyperbolic Coxeter $N$-Polytopes with $n+2$ Facets
JO  - Matematičeskie zametki
PY  - 2004
SP  - 909
EP  - 916
VL  - 75
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a8/
LA  - ru
ID  - MZM_2004_75_6_a8
ER  - 
%0 Journal Article
%A P. V. Tumarkin
%T Hyperbolic Coxeter $N$-Polytopes with $n+2$ Facets
%J Matematičeskie zametki
%D 2004
%P 909-916
%V 75
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a8/
%G ru
%F MZM_2004_75_6_a8
P. V. Tumarkin. Hyperbolic Coxeter $N$-Polytopes with $n+2$ Facets. Matematičeskie zametki, Tome 75 (2004) no. 6, pp. 909-916. http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a8/

[1] Andreev E. M., “O vypuklykh mnogogrannikakh v prostranstvakh Lobachevskogo”, Matem. sb., 81:3 (1970), 445–478 | MR | Zbl

[2] Andreev E. M., “O vypuklykh mnogogrannikakh konechnogo ob'ema v prostranstve Lobachevskogo”, Matem. sb., 83:2 (1970), 256–260 | MR | Zbl

[3] Lannér F., “On complexes with transitive groups of automorphisms”, Comm. Sem. Math. Univ. Lund, 11 (1950), 1–71 | MR

[4] Vinberg E. B., “Diskretnye gruppy, porozhdennye otrazheniyami, v prostranstvakh Lobachevskogo”, Matem. sb., 72(114):3 (1967), 471–488 | MR | Zbl

[5] Kaplinskaya I. M., “O diskretnykh gruppakh, porozhdennykh otrazheniyami v granyakh simplitsialnykh prizm v prostranstvakh Lobachevskogo”, Matem. zametki, 15:1 (1974), 159–164 | MR

[6] Esselmann F., “The classification of compact hyperbolic Coxeter $d$-polytopes with $d+2$ facets”, Comm. Math. Helv., 71 (1996), 229–242 | DOI | MR | Zbl

[7] Grünbaum B., Convex Polytopes, John Wiley Sons, New York, 1967 | Zbl

[8] Emelichev V. A., Kovalev M. M., Kravtsov M. K., Mnogogranniki, grafy, optimizatsiya, Nauka, M., 1981

[9] Vinberg E. B., “Giperbolicheskie gruppy otrazhenii”, UMN, 40:1 (1985), 29–64

[10] Vinberg E. B., “Otsutstvie kristallograficheskikh grupp otrazhenii v prostranstvakh Lobachevskogo bolshoi razmernosti”, Tr. MMO, 47, URSS, M., 1984, 68–102 | Zbl

[11] Tumarkin P., Hyperbolic Coxeter $n$-polytopes with $n+2$ facets, , 2003 E-print math.MG/0301133