Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2004_75_6_a8, author = {P. V. Tumarkin}, title = {Hyperbolic {Coxeter} $N${-Polytopes} with $n+2$ {Facets}}, journal = {Matemati\v{c}eskie zametki}, pages = {909--916}, publisher = {mathdoc}, volume = {75}, number = {6}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a8/} }
P. V. Tumarkin. Hyperbolic Coxeter $N$-Polytopes with $n+2$ Facets. Matematičeskie zametki, Tome 75 (2004) no. 6, pp. 909-916. http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a8/
[1] Andreev E. M., “O vypuklykh mnogogrannikakh v prostranstvakh Lobachevskogo”, Matem. sb., 81:3 (1970), 445–478 | MR | Zbl
[2] Andreev E. M., “O vypuklykh mnogogrannikakh konechnogo ob'ema v prostranstve Lobachevskogo”, Matem. sb., 83:2 (1970), 256–260 | MR | Zbl
[3] Lannér F., “On complexes with transitive groups of automorphisms”, Comm. Sem. Math. Univ. Lund, 11 (1950), 1–71 | MR
[4] Vinberg E. B., “Diskretnye gruppy, porozhdennye otrazheniyami, v prostranstvakh Lobachevskogo”, Matem. sb., 72(114):3 (1967), 471–488 | MR | Zbl
[5] Kaplinskaya I. M., “O diskretnykh gruppakh, porozhdennykh otrazheniyami v granyakh simplitsialnykh prizm v prostranstvakh Lobachevskogo”, Matem. zametki, 15:1 (1974), 159–164 | MR
[6] Esselmann F., “The classification of compact hyperbolic Coxeter $d$-polytopes with $d+2$ facets”, Comm. Math. Helv., 71 (1996), 229–242 | DOI | MR | Zbl
[7] Grünbaum B., Convex Polytopes, John Wiley Sons, New York, 1967 | Zbl
[8] Emelichev V. A., Kovalev M. M., Kravtsov M. K., Mnogogranniki, grafy, optimizatsiya, Nauka, M., 1981
[9] Vinberg E. B., “Giperbolicheskie gruppy otrazhenii”, UMN, 40:1 (1985), 29–64
[10] Vinberg E. B., “Otsutstvie kristallograficheskikh grupp otrazhenii v prostranstvakh Lobachevskogo bolshoi razmernosti”, Tr. MMO, 47, URSS, M., 1984, 68–102 | Zbl
[11] Tumarkin P., Hyperbolic Coxeter $n$-polytopes with $n+2$ facets, , 2003 E-print math.MG/0301133