Modules over Endomorphism Rings
Matematičeskie zametki, Tome 75 (2004) no. 6, pp. 895-908
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that $A$ is a right distributive ring if and only if all quasiinjective right $A$-modules are Bezout left modules over their endomorphism rings if and only if for any quasiinjective right $A$-module $M$ which is a Bezout left $\operatorname{End}(M)$-module, every direct summand $N$ of $M$ is a Bezout $\operatorname{End}(M)$-module. If $A$ is a right or left perfect ring, then all right $A$-modules are Bezout left modules over their endomorphism rings if and only if all right $A$-modules are distributive left modules over their endomorphism rings if and only if $A$ is a distributive ring.
@article{MZM_2004_75_6_a7,
author = {A. A. Tuganbaev},
title = {Modules over {Endomorphism} {Rings}},
journal = {Matemati\v{c}eskie zametki},
pages = {895--908},
year = {2004},
volume = {75},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a7/}
}
A. A. Tuganbaev. Modules over Endomorphism Rings. Matematičeskie zametki, Tome 75 (2004) no. 6, pp. 895-908. http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a7/
[1] Tuganbaev A. A., Semidistributive Modules and Rings, Kluwer Academic Publishers, Dordrecht–Boston–London, 1998 | Zbl
[2] Feis K., Algebra: koltsa, moduli i kategorii, T. II, Mir, M., 1979
[3] Camillo V., “Distributive modules”, J. Algebra, 36:1 (1975), 16–25 | DOI | MR | Zbl
[4] Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia, 1991 | Zbl
[5] Stephenson W., “Modules whose lattice of submodules is distributive”, Proc. London Math. Soc., 28:2 (1974), 291–310 | DOI | MR | Zbl
[6] Fuks L., Beskonechnye abelevy gruppy, T. II, Mir, M., 1977