The Concentration Function of Additive Functions with Nonmultiplicative Weight
Matematičeskie zametki, Tome 75 (2004) no. 6, pp. 877-894.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $g(n)$ is a real-valued additive function and $\tau(n)$ is the number of divisors of $n$. In this paper, we prove that there exists a constant $C$ such that $$ \sup_a\sum_{\substack n\\g(n)\in[a,a+1)} \tau(N-n) \le C\frac{N\,\log N}{\sqrt{W(N)}}, $$ where $$ W(N) =4+\min_\lambda\biggl(\lambda^2 +\sum_{p} \frac1p\min\bigl(1,(g(p)-\lambda\log p)^2\bigr)\biggr). $$ In particular, it follows from this result that $$ \sup_a\bigl|\bigl\{m,n:mn,\;g(N-mn)=a\bigr\}\bigr| \ll N\,\log N\, \biggl(\sum_{p,\,g(p)\ne0}(1/p)\biggr)^{-1/2}. $$ The implicit constant is absolute.
@article{MZM_2004_75_6_a6,
     author = {N. M. Timofeev and M. B. Khripunova},
     title = {The {Concentration} {Function} of {Additive} {Functions} with {Nonmultiplicative} {Weight}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {877--894},
     publisher = {mathdoc},
     volume = {75},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a6/}
}
TY  - JOUR
AU  - N. M. Timofeev
AU  - M. B. Khripunova
TI  - The Concentration Function of Additive Functions with Nonmultiplicative Weight
JO  - Matematičeskie zametki
PY  - 2004
SP  - 877
EP  - 894
VL  - 75
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a6/
LA  - ru
ID  - MZM_2004_75_6_a6
ER  - 
%0 Journal Article
%A N. M. Timofeev
%A M. B. Khripunova
%T The Concentration Function of Additive Functions with Nonmultiplicative Weight
%J Matematičeskie zametki
%D 2004
%P 877-894
%V 75
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a6/
%G ru
%F MZM_2004_75_6_a6
N. M. Timofeev; M. B. Khripunova. The Concentration Function of Additive Functions with Nonmultiplicative Weight. Matematičeskie zametki, Tome 75 (2004) no. 6, pp. 877-894. http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a6/

[1] Ruzsa I., “On the concentration of additive functions”, Acta Math. Acad. Sci. Hungar., 36 (1980), 215–232 | DOI | MR | Zbl

[2] Halasz G., “On the distribution of additive arithmetic functions”, Acta Arith., 27 (1974), 143–152 | MR

[3] Timofeev N. M., “Gipoteza Erdesha–Kubilyusa o raspredelenii znachenii additivnykh funktsii na posledovatelnosti sdvinutykh prostykh chisel”, Acta Arith., 58:2 (1991), 113–131 | MR | Zbl

[4] Elliott P. D. T. A., “The concentration function of additive functions on shifted primes”, Acta Math., 173 (1994), 1–35 | DOI | MR | Zbl

[5] Timofeev N. M., Khripunova M. B., “Raspredelenie chisel s zadannym chislom prostykh delitelei v progressiyakh”, Matem. zametki, 55:2 (1994), 144–156 | MR | Zbl

[6] Timofeev N. M., Khripunova M. B., “Problema Titchmarsha s chislami, imeyuschimi zadannoe chislo prostykh delitelei”, Matem. zametki, 59:4 (1996), 586–603 | MR | Zbl

[7] Tenenbaum G., Introduction à la theorie analytique et probabiliste des nombres, Institut E. Cartan, 13. Université de Nancy I, 1990 | Zbl

[8] Halasz G., “Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen”, Acta Math. Acad. Sci. Hungar., 19 (1968), 365–403 | DOI | MR | Zbl

[9] Elliott P. D. T. A., Probabilistic Number Theory. I. Mean Value Theorems, Grundlehren Math. Wiss., 239, Springer-Verlag, New York–Heidelberg–Berlin, 1979 | Zbl

[10] Levin V. V., Timofeev N. M., “Raspredelenie arifmeticheskikh funktsii v srednem po progressiyam (teoremy tipa Vinogradova–Bomberi)”, Matem. sb., 125:4 (1984), 558–572 | MR | Zbl

[11] Montgomeri G., Multiplikativnaya teoriya chisel, Mir, M., 1974

[12] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967