Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2004_75_6_a4, author = {O. I. Makhmudov}, title = {Cauchy {Problem} for {Elliptic} {Systems} in the {Space} $\mathbb R^m$}, journal = {Matemati\v{c}eskie zametki}, pages = {849--860}, publisher = {mathdoc}, volume = {75}, number = {6}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a4/} }
O. I. Makhmudov. Cauchy Problem for Elliptic Systems in the Space $\mathbb R^m$. Matematičeskie zametki, Tome 75 (2004) no. 6, pp. 849-860. http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a4/
[1] Lavrentev M. M., O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, VTs SO AN SSSR, Novosibirsk, 1962
[2] Lavrentev M. M., “O zadache Koshi dlya uravneniya Laplasa”, Izv. AN SSSR. Ser. matem., 20:6 (1956), 819–842 | Zbl
[3] Margelyan S. N., “Garmonicheskaya approksimatsiya i priblizhennoe reshenie zadachi Koshi dlya uravneniya Laplasa”, UMN, 11:5 (1956), 3–26
[4] Ivanov V. K., “Zadacha Koshi dlya uravneniya Laplasa v beskonechnoi polose”, Differents. uravneniya, 1:1 (1965), 131–136 | Zbl
[5] Yarmukhamedov Sh. Ya., Ishankulov T. I., Makhmudov O. I., “O zadache Koshi dlya uravneniya Laplasa v beskonechnoi polose”, Dokl. AN SSSR, 235:2 (1977), 281–283 | Zbl
[6] Yarmukhamedov Sh. Ya., Ishankulov T. I., Makhmudov O. I., “O zadache Koshi dlya sistemy uravnenii teorii uprugosti v prostranstve”, Sib. matem. zh., 33:1 (1992), 186–190 | MR
[7] Ishankulov T. I., Makhmudov O. I., “Zadacha Koshi dlya sistemy uravnenii termouprugosti v prostranstve”, Matem. zametki, 64:2 (1998), 210–217 | MR
[8] Makhmudov O. I., Zadacha Koshi dlya sistemy teorii uprugosti v prostranstve, Diss. $\dots$ k.f.-m.n., Novosibirsk, 1990
[9] Makhmudov O. I., “Zadacha Koshi dlya sistemy uravnenii prostranstvennoi teorii uprugosti v peremescheniyakh”, Izv. vuzov. Ser. matem., 1994, no. 1(380), 54–61 | MR | Zbl
[10] Makhmudov O. I., Niezov I. E., “Regulyarizatsiya resheniya zadachi Koshi dlya sistemy uravnenii teorii uprugosti v peremescheniyakh”, Sib. matem. zh., 39:2 (1998), 369–376 | MR | Zbl
[11] Makhmudov O. I., Niezov I. E., “Ob odnoi zadache Koshi dlya sistemy uravnenii teorii uprugosti”, Differents. uravneniya, 36:5 (2000), 674–678 | MR | Zbl
[12] Makhmudov O. I., Niezov I. E., “Regulyarizatsiya resheniya zadachi Koshi dlya sistemy teorii uprugosti”, Matem. zametki, 68:4 (2000), 548–553 | MR | Zbl
[13] Makhmudov O. I., Niezov I. E., “Zadacha Koshi dlya sistemy teorii uprugosti v beskonechnoi oblasti”, Uzbekskii matem. zh., 1999, no. 2, 34–39 | MR
[14] Ishankulov T. I., Makhmudov O. I., “Zadacha Koshi dlya sistemy uravnenii momentnoi teorii uprugosti v prostranstve”, Uzbekskii matem. zh., 1:1 (1996), 22–30 | MR
[15] Aizenberg L. A., Tarkhanov N. N., “Abstraktnaya formula Karlemana”, Dokl. AN SSSR, 298:6 (1988), 1292–1296 | Zbl
[16] Tarkhanov N. N., “O matritse Karlemana dlya ellipticheskikh sistem”, Dokl. AN SSSR, 284:2 (1985), 294–297 | MR | Zbl
[17] Petrovskii I. G., Lektsii ob uravneniyakh s chastnymi proizvodnymi, Fizmatgiz, M., 1961
[18] Tikhonov A. N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, Dokl. AN SSSR, 151:3 (1963), 501–504 | MR | Zbl
[19] Kupradze V. D., Burchuladze T. V., Gegeliya T. G. i dr., Trekhmernye zadachi matematicheskoi teorii uprugosti i termouprugosti. Klassicheskaya i mikropolyarnaya teoriya. Statika, garmonicheskie kolebaniya, dinamika. Osnovy i metody resheniya, Nauka, M., 1976
[20] Dzharbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966