On Domination Conditions for Systems of Minimal Differential Operators Acting in the Space $L_\infty(\mathbb R^n)$
Matematičeskie zametki, Tome 75 (2004) no. 6, pp. 841-848

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the linear space of minimal differential operators with constant coefficients which are dominated by systems of minimal operators acting in spaces with uniform norm. In terms of domination conditions, we prove the quasiellipticity test for a given operator; this criterion generalizes a similar result of De Leeuw and Mirkil to elliptic operators.
@article{MZM_2004_75_6_a3,
     author = {D. V. Lymanskyi},
     title = {On {Domination} {Conditions} for {Systems} of {Minimal} {Differential} {Operators} {Acting} in the {Space} $L_\infty(\mathbb R^n)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {841--848},
     publisher = {mathdoc},
     volume = {75},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a3/}
}
TY  - JOUR
AU  - D. V. Lymanskyi
TI  - On Domination Conditions for Systems of Minimal Differential Operators Acting in the Space $L_\infty(\mathbb R^n)$
JO  - Matematičeskie zametki
PY  - 2004
SP  - 841
EP  - 848
VL  - 75
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a3/
LA  - ru
ID  - MZM_2004_75_6_a3
ER  - 
%0 Journal Article
%A D. V. Lymanskyi
%T On Domination Conditions for Systems of Minimal Differential Operators Acting in the Space $L_\infty(\mathbb R^n)$
%J Matematičeskie zametki
%D 2004
%P 841-848
%V 75
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a3/
%G ru
%F MZM_2004_75_6_a3
D. V. Lymanskyi. On Domination Conditions for Systems of Minimal Differential Operators Acting in the Space $L_\infty(\mathbb R^n)$. Matematičeskie zametki, Tome 75 (2004) no. 6, pp. 841-848. http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a3/