On Domination Conditions for Systems of Minimal Differential Operators Acting in the Space $L_\infty(\mathbb R^n)$
Matematičeskie zametki, Tome 75 (2004) no. 6, pp. 841-848.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the linear space of minimal differential operators with constant coefficients which are dominated by systems of minimal operators acting in spaces with uniform norm. In terms of domination conditions, we prove the quasiellipticity test for a given operator; this criterion generalizes a similar result of De Leeuw and Mirkil to elliptic operators.
@article{MZM_2004_75_6_a3,
     author = {D. V. Lymanskyi},
     title = {On {Domination} {Conditions} for {Systems} of {Minimal} {Differential} {Operators} {Acting} in the {Space} $L_\infty(\mathbb R^n)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {841--848},
     publisher = {mathdoc},
     volume = {75},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a3/}
}
TY  - JOUR
AU  - D. V. Lymanskyi
TI  - On Domination Conditions for Systems of Minimal Differential Operators Acting in the Space $L_\infty(\mathbb R^n)$
JO  - Matematičeskie zametki
PY  - 2004
SP  - 841
EP  - 848
VL  - 75
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a3/
LA  - ru
ID  - MZM_2004_75_6_a3
ER  - 
%0 Journal Article
%A D. V. Lymanskyi
%T On Domination Conditions for Systems of Minimal Differential Operators Acting in the Space $L_\infty(\mathbb R^n)$
%J Matematičeskie zametki
%D 2004
%P 841-848
%V 75
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a3/
%G ru
%F MZM_2004_75_6_a3
D. V. Lymanskyi. On Domination Conditions for Systems of Minimal Differential Operators Acting in the Space $L_\infty(\mathbb R^n)$. Matematičeskie zametki, Tome 75 (2004) no. 6, pp. 841-848. http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a3/

[1] Khermander L. K., K teorii obschikh differentsialnykh operatorov v chastnykh proizvodnykh, IL, M., 1959

[2] Malamud M. M., “Otsenki dlya sistem minimalnykh i maksimalnykh differentsialnykh operatorov v $L_p(\Omega)$”, Tr. MMO, 56, URSS, M., 1995, 206–261

[3] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996, 480 pp. | Zbl

[4] Ilin V. P., “Ob usloviyakh spravedlivosti neravenstv mezhdu $L_p$-normami chastnykh proizvodnykh funktsii mnogikh peremennykh”, Tr. MIAN, 96, Nauka, M., 1968, 205–242 | Zbl

[5] Boman J., “Supremum norms for partial derivatives of functions of several real variables”, Illinois J. Math., 16:2 (1972), 203–216 | Zbl

[6] Besov O. V., “O koertsitivnosti v neizotropnom prostranstve S. L. Soboleva”, Matem. sb., 73 (115):4 (1967), 585–599 | Zbl

[7] Malamud M. M., “Otsenki dlya differentsialnykh operatorov v prostranstvakh s ravnomernoi normoi i koertsitivnost v prostranstvakh Soboleva”, Dokl. AN SSSR, 37:1 (1988), 25–29 | Zbl

[8] Volevich L. R., Gindikin S. G., Metod mnogogrannika Nyutona v teorii differentsialnykh uravnenii v chastnykh proizvodnykh, URSS, M., 2002

[9] De Leeuw K., Mirkil H., “A priori estimates for differential operators in $L_\infty$ norm.”, Illinois J. Math., 8:3 (1964), 112–124 | Zbl

[10] Ornstein D., “A non-equality for differential operators in the $L_1$ norm.”, Arch. Rational Mech. Anal., 11 (1962), 40–49 | DOI | Zbl

[11] Rudin U., Funktsionalnyi analiz, Mir, M., 1975

[12] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 2. Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1978

[13] Eberlein W. F., “Abstract ergodic theorems and weak almost periodic functions”, Trans. Amer. Math. Soc., 67 (1949), 217–240 | DOI | Zbl