Ahmed–Rao Bases
Matematičeskie zametki, Tome 75 (2004) no. 6, pp. 834-840
Cet article a éte moissonné depuis la source Math-Net.Ru
For $N= 2^s$, in the space of complex-valued $N$-periodic functions of an integer argument, we construct s orthogonal bases such that the elements of the $r$th basis, where $r\in\{1,\dots,s\}$, take $2^r$ values of uniformly distributed on the unit circle in the complex plane.
@article{MZM_2004_75_6_a2,
author = {A. V. Korovkin and V. N. Malozemov},
title = {Ahmed{\textendash}Rao {Bases}},
journal = {Matemati\v{c}eskie zametki},
pages = {834--840},
year = {2004},
volume = {75},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a2/}
}
A. V. Korovkin; V. N. Malozemov. Ahmed–Rao Bases. Matematičeskie zametki, Tome 75 (2004) no. 6, pp. 834-840. http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a2/
[1] Akhmed N., Rao K. R., Ortogonalnye preobrazovaniya pri obrabotke tsifrovykh signalov, Svyaz, M., 1980
[2] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha, Nauka, M., 1987 | Zbl
[3] Trakhtman A. M., Trakhtman V. A., Osnovy teorii diskretnykh signalov na konechnykh intervalakh, Sov. radio, M., 1975
[4] Malozemov V. N., Masharskii S. M., “Obobschennye veivletnye bazisy, svyazannye s diskretnym preobrazovaniem Vilenkina–Krestensona”, Algebra i analiz, 13:1 (2001), 111–157