Homogenization of Elasticity Problems with Boundary Conditions of Signorini type
Matematičeskie zametki, Tome 75 (2004) no. 6, pp. 818-833.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a perforated domain $\Omega^\varepsilon =\Omega\cap\varepsilon \omega$ formed of a fixed domain $\Omega$ and an $\varepsilon$-compression of a 1-periodic domain $omega$, we consider problems of elasticity for variational inequalities with boundary conditions of Signorini type on a part of the surface $S^\varepsilon _0$ of perforation. We study the asymptotic behavior of solutions as $\varepsilon\to0$ depending on the structure of the set $S^\varepsilon _0$. In the general case, the limit (homogenized) problem has the two distinguishing properties: (i) the limit set of admissible displacements is determined by nonlinear restrictions almost everywhere in the domain $\Omega$, i.e., in the limit, the Signorini conditions on the surface $S^\varepsilon _0$ can turn into conditions posed at interior points of $\Omega$ (ii) the limit problem is stated for an homogenized Lagrangian which need not coincide with the quadratic form usually determining the homogenized elasticity tensor. Theorems concerning the homogenization of such problems were obtained by the two-scale convergence method. We describe how the limit set of admissible displacements and the homogenized Lagrangian depend on the geometry of the set $S^\varepsilon _0$ on which the Signorini conditions are posed.
@article{MZM_2004_75_6_a1,
     author = {G. A. Iosif'yan},
     title = {Homogenization of {Elasticity} {Problems} with {Boundary} {Conditions} of {Signorini} type},
     journal = {Matemati\v{c}eskie zametki},
     pages = {818--833},
     publisher = {mathdoc},
     volume = {75},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a1/}
}
TY  - JOUR
AU  - G. A. Iosif'yan
TI  - Homogenization of Elasticity Problems with Boundary Conditions of Signorini type
JO  - Matematičeskie zametki
PY  - 2004
SP  - 818
EP  - 833
VL  - 75
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a1/
LA  - ru
ID  - MZM_2004_75_6_a1
ER  - 
%0 Journal Article
%A G. A. Iosif'yan
%T Homogenization of Elasticity Problems with Boundary Conditions of Signorini type
%J Matematičeskie zametki
%D 2004
%P 818-833
%V 75
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a1/
%G ru
%F MZM_2004_75_6_a1
G. A. Iosif'yan. Homogenization of Elasticity Problems with Boundary Conditions of Signorini type. Matematičeskie zametki, Tome 75 (2004) no. 6, pp. 818-833. http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a1/

[1] Yosifian G. A., “Some homogenization problems for the system of elasticity with nonlinear boundary conditions in perforated domains”, Appl. Anal., 71 (1999), 379–411 | DOI | Zbl

[2] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980

[3] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979

[4] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo MGU, M., 1990 | Zbl

[5] Iosifyan G. A., “O nekotorykh odnostoronnikh kraevykh zadachakh dlya uprugikh tel s izrezannoi granitsei”, Tr. sem. im. I. G. Petrovskogo, 21, Izd-vo Mosk. un-ta, M., 1999, 240–297

[6] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov i integralnykh funktsionalov, Fizmatgiz, M., 1993 | Zbl

[7] Nguetseng G., “A general convergence result for a functional related to homogenization”, SIAM J. Math. Anal., 20 (1980), 608–623 | DOI

[8] Allaire G., “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23 (1992), 1482–1518 | DOI | Zbl

[9] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Matem. sb., 191:7 (2000), 31–72 | Zbl

[10] Shvarts L., Analiz, Mir, M., 1972

[11] Yosifian G. A., “On some homogenization problems in perforated domains with nonlinear boundary conditions”, Appl. Anal., 65 (1997), 257–288 | DOI | Zbl

[12] Yosifian G. A., “Homogenization of some contact problems for the system of elasticity in perforated domains”, Rend. Sem. Mat. Univ. Padova, 105 (2001), 37–64 | Zbl