Estimates of $C^m$-Capacity of Compact Sets in $\mathbb{R}^N$
Matematičeskie zametki, Tome 75 (2004) no. 6, pp. 803-817.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a given homogeneous elliptic partial differential operator $L$ with constant complex coefficients, the Banach space $V$ of distributions in $\mathbb{R}^N$ and a compact set $X$ in $\mathbb{R}^N$, we study the quantity $\lambda_{V,L}(X)$ equal to the distance in $V$ from the class of functions $f_0$ satisfying the equation $Lf_0 = 1$ in a neighborhood of $X$ (depending on $f_0$) to the solution space of the equation $Lf= 0$ in the neighborhoods of $X$. For $V=BC^m$, we obtain upper and lower bounds for $\lambda_{V,L}(X)$ in terms of the metric properties of the set $X$, which allows us to obtain estimates for $\lambda_{V,L}(X)$ for a wide class of spaces $V$.
@article{MZM_2004_75_6_a0,
     author = {A. M. Voroncov},
     title = {Estimates of $C^m${-Capacity} of {Compact} {Sets} in $\mathbb{R}^N$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--817},
     publisher = {mathdoc},
     volume = {75},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a0/}
}
TY  - JOUR
AU  - A. M. Voroncov
TI  - Estimates of $C^m$-Capacity of Compact Sets in $\mathbb{R}^N$
JO  - Matematičeskie zametki
PY  - 2004
SP  - 803
EP  - 817
VL  - 75
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a0/
LA  - ru
ID  - MZM_2004_75_6_a0
ER  - 
%0 Journal Article
%A A. M. Voroncov
%T Estimates of $C^m$-Capacity of Compact Sets in $\mathbb{R}^N$
%J Matematičeskie zametki
%D 2004
%P 803-817
%V 75
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a0/
%G ru
%F MZM_2004_75_6_a0
A. M. Voroncov. Estimates of $C^m$-Capacity of Compact Sets in $\mathbb{R}^N$. Matematičeskie zametki, Tome 75 (2004) no. 6, pp. 803-817. http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a0/

[1] Vorontsov A. M., “O sovmestnykh priblizheniyakh v banakhovykh prostranstvakh obobschennykh funktsii”, Matem. zametki, 73:2 (2003), 179–194 | MR | Zbl

[2] O'Farrell A. G., “The order of a symmetric concrete space”, Proc. Roy. Irish Acad., 88A:1 (1988), 39–48 | MR

[3] O'Farrell A. G., “$T$-invariance”, Proc. Roy. Irish Acad., 92A:2 (1992), 185–203 | MR

[4] Boven A., Paramonov P. V., “Approksimatsiya meromorfnymi i tselymi resheniyami ellipticheskikh uravnenii v banakhovykh prostranstvakh raspredelenii”, Matem. sb., 189:4 (1998), 481–502 | MR

[5] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi prizvodnymi, T. 1, Mir, M., 1986

[6] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi prizvodnymi, T. 2, Mir, M., 1986

[7] Gote P. M., Paramonov P. V., “Approksimatsiya garmonicheskimi funktsiyami v $C^1$-norme i garmonicheskii $C^1$-poperechnik kompaktnykh mnozhestv v ${\mathbb{R}}^n$”, Matem. zametki, 53:4 (1993), 21–30 | MR

[8] Gorokhov Yu. A., “Approksimatsiya garmonicheskimi funktsiyami v $C^m$-norme i garmonicheskaya $C^m$-vmestimost kompaktnykh mnozhestv v ${\mathbb{R}}^n$”, Matem. zametki, 62:3 (1997), 372–382 | MR | Zbl

[9] Gamelin T., Khavinson D., “The isoperimetric inequality and rational approximation”, Amer. Math. Month., 96:1 (1989), 18–30 | DOI | MR | Zbl

[10] Khavinson D., “On uniform approximation by harmonic functions”, Michigan Math. J., 34 (1987), 465–473 | DOI | MR | Zbl

[11] Weinstock B. M., “Uniform approximation by solutions of elliptic equations”, Proc. Amer. Math. Soc., 41:2 (1973), 513–517 | DOI | MR | Zbl

[12] Stein I. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973

[13] Verdera J., “$C^m$-approximation by solutions of elliptic equations, and Calderon–Zygmund operators”, Duke Math. J., 55:1 (1987), 157–187 | DOI | MR | Zbl

[14] Gamelin T., Ravnomernye algebry, Mir, M., 1973 | Zbl

[15] Wang J. L., “A localization operator for rational modules”, Rocky Mountain J. Math., 19 (1989), 999–1002 | MR | Zbl